Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950581303> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2950581303 abstract "Kernel regression is a popular non-parametric fitting technique. It aims at learning a function which estimates the targets for test inputs as precise as possible. Generally, the function value for a test input is estimated by a weighted average of the surrounding training examples. The weights are typically computed by a distance-based kernel function and they strongly depend on the distances between examples. In this paper, we first review the latest developments of sparse metric learning and kernel regression. Then a novel kernel regression method involving sparse metric learning, which is called kernel regression with sparse metric learning (KR$_$SML), is proposed. The sparse kernel regression model is established by enforcing a mixed $(2,1)$-norm regularization over the metric matrix. It learns a Mahalanobis distance metric by a gradient descent procedure, which can simultaneously conduct dimensionality reduction and lead to good prediction results. Our work is the first to combine kernel regression with sparse metric learning. To verify the effectiveness of the proposed method, it is evaluated on 19 data sets for regression. Furthermore, the new method is also applied to solving practical problems of forecasting short-term traffic flows. In the end, we compare the proposed method with other three related kernel regression methods on all test data sets under two criterions. Experimental results show that the proposed method is much more competitive." @default.
- W2950581303 created "2019-06-27" @default.
- W2950581303 creator A5047846625 @default.
- W2950581303 creator A5053521734 @default.
- W2950581303 date "2017-12-24" @default.
- W2950581303 modified "2023-09-23" @default.
- W2950581303 title "Kernel Regression with Sparse Metric Learning" @default.
- W2950581303 cites W1495858509 @default.
- W2950581303 cites W1531948468 @default.
- W2950581303 cites W2011233848 @default.
- W2950581303 cites W2093357278 @default.
- W2950581303 cites W2117154949 @default.
- W2950581303 cites W2140095548 @default.
- W2950581303 cites W2144902422 @default.
- W2950581303 cites W2161767008 @default.
- W2950581303 cites W2167732364 @default.
- W2950581303 cites W2211925278 @default.
- W2950581303 cites W46383130 @default.
- W2950581303 doi "https://doi.org/10.48550/arxiv.1712.09001" @default.
- W2950581303 hasPublicationYear "2017" @default.
- W2950581303 type Work @default.
- W2950581303 sameAs 2950581303 @default.
- W2950581303 citedByCount "0" @default.
- W2950581303 crossrefType "posted-content" @default.
- W2950581303 hasAuthorship W2950581303A5047846625 @default.
- W2950581303 hasAuthorship W2950581303A5053521734 @default.
- W2950581303 hasBestOaLocation W29505813031 @default.
- W2950581303 hasConcept C105795698 @default.
- W2950581303 hasConcept C111030470 @default.
- W2950581303 hasConcept C114614502 @default.
- W2950581303 hasConcept C119857082 @default.
- W2950581303 hasConcept C122280245 @default.
- W2950581303 hasConcept C12267149 @default.
- W2950581303 hasConcept C134517425 @default.
- W2950581303 hasConcept C152877465 @default.
- W2950581303 hasConcept C153180895 @default.
- W2950581303 hasConcept C154945302 @default.
- W2950581303 hasConcept C162324750 @default.
- W2950581303 hasConcept C176217482 @default.
- W2950581303 hasConcept C195699287 @default.
- W2950581303 hasConcept C200695384 @default.
- W2950581303 hasConcept C21547014 @default.
- W2950581303 hasConcept C33923547 @default.
- W2950581303 hasConcept C41008148 @default.
- W2950581303 hasConcept C74127309 @default.
- W2950581303 hasConcept C74193536 @default.
- W2950581303 hasConcept C74887250 @default.
- W2950581303 hasConcept C83546350 @default.
- W2950581303 hasConceptScore W2950581303C105795698 @default.
- W2950581303 hasConceptScore W2950581303C111030470 @default.
- W2950581303 hasConceptScore W2950581303C114614502 @default.
- W2950581303 hasConceptScore W2950581303C119857082 @default.
- W2950581303 hasConceptScore W2950581303C122280245 @default.
- W2950581303 hasConceptScore W2950581303C12267149 @default.
- W2950581303 hasConceptScore W2950581303C134517425 @default.
- W2950581303 hasConceptScore W2950581303C152877465 @default.
- W2950581303 hasConceptScore W2950581303C153180895 @default.
- W2950581303 hasConceptScore W2950581303C154945302 @default.
- W2950581303 hasConceptScore W2950581303C162324750 @default.
- W2950581303 hasConceptScore W2950581303C176217482 @default.
- W2950581303 hasConceptScore W2950581303C195699287 @default.
- W2950581303 hasConceptScore W2950581303C200695384 @default.
- W2950581303 hasConceptScore W2950581303C21547014 @default.
- W2950581303 hasConceptScore W2950581303C33923547 @default.
- W2950581303 hasConceptScore W2950581303C41008148 @default.
- W2950581303 hasConceptScore W2950581303C74127309 @default.
- W2950581303 hasConceptScore W2950581303C74193536 @default.
- W2950581303 hasConceptScore W2950581303C74887250 @default.
- W2950581303 hasConceptScore W2950581303C83546350 @default.
- W2950581303 hasLocation W29505813031 @default.
- W2950581303 hasOpenAccess W2950581303 @default.
- W2950581303 hasPrimaryLocation W29505813031 @default.
- W2950581303 hasRelatedWork W180864206 @default.
- W2950581303 hasRelatedWork W2029171653 @default.
- W2950581303 hasRelatedWork W2121506664 @default.
- W2950581303 hasRelatedWork W2133396101 @default.
- W2950581303 hasRelatedWork W2168765007 @default.
- W2950581303 hasRelatedWork W2388959921 @default.
- W2950581303 hasRelatedWork W2890196891 @default.
- W2950581303 hasRelatedWork W2910776544 @default.
- W2950581303 hasRelatedWork W2913100396 @default.
- W2950581303 hasRelatedWork W62477 @default.
- W2950581303 isParatext "false" @default.
- W2950581303 isRetracted "false" @default.
- W2950581303 magId "2950581303" @default.
- W2950581303 workType "article" @default.