Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950609539> ?p ?o ?g. }
- W2950609539 endingPage "2137" @default.
- W2950609539 startingPage "2137" @default.
- W2950609539 abstract "Large wildfires are an increasing threat to the western U.S. In the 2017 fire season, extensive wildfires occurred across the Pacific Northwest (PNW). To evaluate public health impacts of wildfire smoke, we integrated numerical simulations and observations for regional fire events during August-September of 2017. A one-way coupled Weather Research and Forecasting and Community Multiscale Air Quality modeling system was used to simulate fire smoke transport and dispersion. To reduce modeling bias in fine particulate matter (PM2.5) and to optimize smoke exposure estimates, we integrated modeling results with the high-resolution Multi-Angle Implementation of Atmospheric Correction satellite aerosol optical depth and the U.S. Environmental Protection Agency AirNow ground-level monitoring PM2.5 concentrations. Three machine learning-based data fusion algorithms were applied: An ordinary multi-linear regression method, a generalized boosting method, and a random forest (RF) method. 10-Fold cross-validation found improved surface PM2.5 estimation after data integration and bias correction, especially with the RF method. Lastly, to assess transient health effects of fire smoke, we applied the optimized high-resolution PM2.5 exposure estimate in a short-term exposure-response function. Total estimated regional mortality attributable to PM2.5 exposure during the smoke episode was 183 (95% confidence interval: 0, 432), with 85% of the PM2.5 pollution and 95% of the consequent multiple-cause mortality contributed by fire emissions. This application demonstrates both the profound health impacts of fire smoke over the PNW and the need for a high-performance fire smoke forecasting and reanalysis system to reduce public health risks of smoke hazards in fire-prone regions." @default.
- W2950609539 created "2019-06-27" @default.
- W2950609539 creator A5019770997 @default.
- W2950609539 creator A5054082513 @default.
- W2950609539 creator A5054538196 @default.
- W2950609539 creator A5068419130 @default.
- W2950609539 creator A5070512232 @default.
- W2950609539 creator A5072197633 @default.
- W2950609539 creator A5075943191 @default.
- W2950609539 creator A5080057213 @default.
- W2950609539 creator A5086461872 @default.
- W2950609539 date "2019-06-17" @default.
- W2950609539 modified "2023-10-15" @default.
- W2950609539 title "Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment" @default.
- W2950609539 cites W1483839007 @default.
- W2950609539 cites W1870932815 @default.
- W2950609539 cites W1942437568 @default.
- W2950609539 cites W1966023765 @default.
- W2950609539 cites W1985872607 @default.
- W2950609539 cites W1989424457 @default.
- W2950609539 cites W1990732325 @default.
- W2950609539 cites W1991615985 @default.
- W2950609539 cites W1996839472 @default.
- W2950609539 cites W2005089486 @default.
- W2950609539 cites W2015825039 @default.
- W2950609539 cites W2033291182 @default.
- W2950609539 cites W2045756997 @default.
- W2950609539 cites W2066148159 @default.
- W2950609539 cites W2067334728 @default.
- W2950609539 cites W2081389263 @default.
- W2950609539 cites W2088144274 @default.
- W2950609539 cites W2089312949 @default.
- W2950609539 cites W2090138698 @default.
- W2950609539 cites W2116468939 @default.
- W2950609539 cites W2118442798 @default.
- W2950609539 cites W2140953789 @default.
- W2950609539 cites W2162052408 @default.
- W2950609539 cites W2176796503 @default.
- W2950609539 cites W2273112858 @default.
- W2950609539 cites W2316167246 @default.
- W2950609539 cites W2334455940 @default.
- W2950609539 cites W2340812225 @default.
- W2950609539 cites W2521370717 @default.
- W2950609539 cites W2573821892 @default.
- W2950609539 cites W2606677187 @default.
- W2950609539 cites W2613628409 @default.
- W2950609539 cites W2735359692 @default.
- W2950609539 cites W2742946820 @default.
- W2950609539 cites W2748942188 @default.
- W2950609539 cites W2753367820 @default.
- W2950609539 cites W2768064084 @default.
- W2950609539 cites W2777948235 @default.
- W2950609539 cites W2793978448 @default.
- W2950609539 cites W2798122482 @default.
- W2950609539 cites W2802203202 @default.
- W2950609539 cites W2883466927 @default.
- W2950609539 cites W2901247368 @default.
- W2950609539 cites W2903932790 @default.
- W2950609539 cites W2914932931 @default.
- W2950609539 cites W2919239087 @default.
- W2950609539 cites W2922360304 @default.
- W2950609539 cites W3210776869 @default.
- W2950609539 doi "https://doi.org/10.3390/ijerph16122137" @default.
- W2950609539 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6617359" @default.
- W2950609539 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31212933" @default.
- W2950609539 hasPublicationYear "2019" @default.
- W2950609539 type Work @default.
- W2950609539 sameAs 2950609539 @default.
- W2950609539 citedByCount "27" @default.
- W2950609539 countsByYear W29506095392020 @default.
- W2950609539 countsByYear W29506095392021 @default.
- W2950609539 countsByYear W29506095392022 @default.
- W2950609539 countsByYear W29506095392023 @default.
- W2950609539 crossrefType "journal-article" @default.
- W2950609539 hasAuthorship W2950609539A5019770997 @default.
- W2950609539 hasAuthorship W2950609539A5054082513 @default.
- W2950609539 hasAuthorship W2950609539A5054538196 @default.
- W2950609539 hasAuthorship W2950609539A5068419130 @default.
- W2950609539 hasAuthorship W2950609539A5070512232 @default.
- W2950609539 hasAuthorship W2950609539A5072197633 @default.
- W2950609539 hasAuthorship W2950609539A5075943191 @default.
- W2950609539 hasAuthorship W2950609539A5080057213 @default.
- W2950609539 hasAuthorship W2950609539A5086461872 @default.
- W2950609539 hasBestOaLocation W29506095391 @default.
- W2950609539 hasConcept C119857082 @default.
- W2950609539 hasConcept C126314574 @default.
- W2950609539 hasConcept C127313418 @default.
- W2950609539 hasConcept C153294291 @default.
- W2950609539 hasConcept C169258074 @default.
- W2950609539 hasConcept C178790620 @default.
- W2950609539 hasConcept C185592680 @default.
- W2950609539 hasConcept C189764856 @default.
- W2950609539 hasConcept C205649164 @default.
- W2950609539 hasConcept C39432304 @default.
- W2950609539 hasConcept C41008148 @default.
- W2950609539 hasConcept C559116025 @default.
- W2950609539 hasConcept C58874564 @default.
- W2950609539 hasConcept C71924100 @default.