Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950649341> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2950649341 abstract "According to the National Highway Traffic Safety Administration (NHTSA), human error is the critical cause for more than 90 percent of motor vehicle crashes. Several risky driving behaviors such as drunk and distracted driving are determined as the main contributors to the huge price-tag of traffic crashes. Numerous studies predicted the real-time likelihood of crash occurrence on a given freeway segment over a short period without considering the driver’s personalized safety factors involved in crashes. The objective of this paper is to address this gap in knowledge by developing a novel approach to formulate the real-time traffic safety risk of individual drivers, as the likelihood of a crash and near-crash events, and to create data-driven frameworks to predict the drivers’ individualized safety risks. To evaluate the proposed framework, we used 100-Car Naturalistic Driving Studies (NDS) dataset. We developed an ensemble of Breiman’s random forest and a newly proposed Multivariate Time Series Random Forest to classify driving events into the crash and near-crash classes on a set of safety factors. The replicated k-fold cross validation is employed to evaluate the models’ performances. The results of this study provide useful insight into human factors contributing to crash and near-crash events and can help researchers and transportation agencies to get a better knowledge of errors and human-related contributing factors in crashes, all of which lead to developing effective strategies to mitigate the crash injury severity outcomes. Moreover, this paper provides valuable information for car insurance companies to develop the application of behavior-based auto insurance." @default.
- W2950649341 created "2019-06-27" @default.
- W2950649341 creator A5016690716 @default.
- W2950649341 creator A5055999995 @default.
- W2950649341 creator A5061500182 @default.
- W2950649341 date "2018-10-26" @default.
- W2950649341 modified "2023-09-23" @default.
- W2950649341 title "Predicting Traffic Safety Risk Factors Using an Ensemble Classifier" @default.
- W2950649341 cites W2014546554 @default.
- W2950649341 doi "https://doi.org/10.1201/9780429434983-9" @default.
- W2950649341 hasPublicationYear "2018" @default.
- W2950649341 type Work @default.
- W2950649341 sameAs 2950649341 @default.
- W2950649341 citedByCount "1" @default.
- W2950649341 countsByYear W29506493412021 @default.
- W2950649341 crossrefType "book-chapter" @default.
- W2950649341 hasAuthorship W2950649341A5016690716 @default.
- W2950649341 hasAuthorship W2950649341A5055999995 @default.
- W2950649341 hasAuthorship W2950649341A5061500182 @default.
- W2950649341 hasConcept C119857082 @default.
- W2950649341 hasConcept C127413603 @default.
- W2950649341 hasConcept C169258074 @default.
- W2950649341 hasConcept C183469790 @default.
- W2950649341 hasConcept C199360897 @default.
- W2950649341 hasConcept C22212356 @default.
- W2950649341 hasConcept C41008148 @default.
- W2950649341 hasConceptScore W2950649341C119857082 @default.
- W2950649341 hasConceptScore W2950649341C127413603 @default.
- W2950649341 hasConceptScore W2950649341C169258074 @default.
- W2950649341 hasConceptScore W2950649341C183469790 @default.
- W2950649341 hasConceptScore W2950649341C199360897 @default.
- W2950649341 hasConceptScore W2950649341C22212356 @default.
- W2950649341 hasConceptScore W2950649341C41008148 @default.
- W2950649341 hasLocation W29506493411 @default.
- W2950649341 hasOpenAccess W2950649341 @default.
- W2950649341 hasPrimaryLocation W29506493411 @default.
- W2950649341 hasRelatedWork W1965976704 @default.
- W2950649341 hasRelatedWork W2009157228 @default.
- W2950649341 hasRelatedWork W2025497301 @default.
- W2950649341 hasRelatedWork W2067510781 @default.
- W2950649341 hasRelatedWork W2069107151 @default.
- W2950649341 hasRelatedWork W2101599966 @default.
- W2950649341 hasRelatedWork W2988744918 @default.
- W2950649341 hasRelatedWork W4210967090 @default.
- W2950649341 hasRelatedWork W4256165003 @default.
- W2950649341 hasRelatedWork W773500611 @default.
- W2950649341 isParatext "false" @default.
- W2950649341 isRetracted "false" @default.
- W2950649341 magId "2950649341" @default.
- W2950649341 workType "book-chapter" @default.