Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950654487> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2950654487 abstract "Conventional approaches to image de-fencing use multiple adjacent frames for segmentation of fences in the reference image and are limited to restoring images of static scenes only. In this paper, we propose a de-fencing algorithm for images of dynamic scenes using an occlusion-aware optical flow method. We divide the problem of image de-fencing into the tasks of automated fence segmentation from a single image, motion estimation under known occlusions and fusion of data from multiple frames of a captured video of the scene. Specifically, we use a pre-trained convolutional neural network to segment fence pixels from a single image. The knowledge of spatial locations of fences is used to subsequently estimate optical flow in the occluded frames of the video for the final data fusion step. We cast the fence removal problem in an optimization framework by modeling the formation of the degraded observations. The inverse problem is solved using fast iterative shrinkage thresholding algorithm (FISTA). Experimental results show the effectiveness of proposed algorithm." @default.
- W2950654487 created "2019-06-27" @default.
- W2950654487 creator A5008425976 @default.
- W2950654487 creator A5067927122 @default.
- W2950654487 creator A5074936277 @default.
- W2950654487 date "2016-09-25" @default.
- W2950654487 modified "2023-09-26" @default.
- W2950654487 title "Deep learning based fence segmentation and removal from an image using a video sequence" @default.
- W2950654487 cites W1555951418 @default.
- W2950654487 cites W1867429401 @default.
- W2950654487 cites W1978900400 @default.
- W2950654487 cites W1998956470 @default.
- W2950654487 cites W2010981316 @default.
- W2950654487 cites W2022238106 @default.
- W2950654487 cites W2095705004 @default.
- W2950654487 cites W2100556411 @default.
- W2950654487 cites W2111237621 @default.
- W2950654487 cites W2112796928 @default.
- W2950654487 cites W2131394160 @default.
- W2950654487 cites W2145023731 @default.
- W2950654487 cites W2171011251 @default.
- W2950654487 cites W2206218737 @default.
- W2950654487 cites W2295936755 @default.
- W2950654487 cites W2470163766 @default.
- W2950654487 cites W2515140620 @default.
- W2950654487 cites W2541775796 @default.
- W2950654487 cites W2913535645 @default.
- W2950654487 cites W2953066166 @default.
- W2950654487 cites W2953360861 @default.
- W2950654487 cites W2964177954 @default.
- W2950654487 cites W3037950864 @default.
- W2950654487 cites W65124300 @default.
- W2950654487 hasPublicationYear "2016" @default.
- W2950654487 type Work @default.
- W2950654487 sameAs 2950654487 @default.
- W2950654487 citedByCount "0" @default.
- W2950654487 crossrefType "posted-content" @default.
- W2950654487 hasAuthorship W2950654487A5008425976 @default.
- W2950654487 hasAuthorship W2950654487A5067927122 @default.
- W2950654487 hasAuthorship W2950654487A5074936277 @default.
- W2950654487 hasConcept C114614502 @default.
- W2950654487 hasConcept C115961682 @default.
- W2950654487 hasConcept C124504099 @default.
- W2950654487 hasConcept C126042441 @default.
- W2950654487 hasConcept C153180895 @default.
- W2950654487 hasConcept C154945302 @default.
- W2950654487 hasConcept C155542232 @default.
- W2950654487 hasConcept C173608175 @default.
- W2950654487 hasConcept C2779652578 @default.
- W2950654487 hasConcept C31972630 @default.
- W2950654487 hasConcept C33923547 @default.
- W2950654487 hasConcept C41008148 @default.
- W2950654487 hasConcept C48515440 @default.
- W2950654487 hasConcept C76155785 @default.
- W2950654487 hasConcept C81363708 @default.
- W2950654487 hasConcept C89600930 @default.
- W2950654487 hasConceptScore W2950654487C114614502 @default.
- W2950654487 hasConceptScore W2950654487C115961682 @default.
- W2950654487 hasConceptScore W2950654487C124504099 @default.
- W2950654487 hasConceptScore W2950654487C126042441 @default.
- W2950654487 hasConceptScore W2950654487C153180895 @default.
- W2950654487 hasConceptScore W2950654487C154945302 @default.
- W2950654487 hasConceptScore W2950654487C155542232 @default.
- W2950654487 hasConceptScore W2950654487C173608175 @default.
- W2950654487 hasConceptScore W2950654487C2779652578 @default.
- W2950654487 hasConceptScore W2950654487C31972630 @default.
- W2950654487 hasConceptScore W2950654487C33923547 @default.
- W2950654487 hasConceptScore W2950654487C41008148 @default.
- W2950654487 hasConceptScore W2950654487C48515440 @default.
- W2950654487 hasConceptScore W2950654487C76155785 @default.
- W2950654487 hasConceptScore W2950654487C81363708 @default.
- W2950654487 hasConceptScore W2950654487C89600930 @default.
- W2950654487 hasLocation W29506544871 @default.
- W2950654487 hasOpenAccess W2950654487 @default.
- W2950654487 hasPrimaryLocation W29506544871 @default.
- W2950654487 hasRelatedWork W1535499967 @default.
- W2950654487 hasRelatedWork W193841763 @default.
- W2950654487 hasRelatedWork W1976320573 @default.
- W2950654487 hasRelatedWork W2063297396 @default.
- W2950654487 hasRelatedWork W2076390825 @default.
- W2950654487 hasRelatedWork W2106485774 @default.
- W2950654487 hasRelatedWork W2124755243 @default.
- W2950654487 hasRelatedWork W2160586992 @default.
- W2950654487 hasRelatedWork W2163172506 @default.
- W2950654487 hasRelatedWork W2372423583 @default.
- W2950654487 hasRelatedWork W2392730554 @default.
- W2950654487 hasRelatedWork W2462617490 @default.
- W2950654487 hasRelatedWork W2470163766 @default.
- W2950654487 hasRelatedWork W2525054030 @default.
- W2950654487 hasRelatedWork W2619554075 @default.
- W2950654487 hasRelatedWork W2755343736 @default.
- W2950654487 hasRelatedWork W2767080782 @default.
- W2950654487 hasRelatedWork W2792273625 @default.
- W2950654487 hasRelatedWork W2079511289 @default.
- W2950654487 hasRelatedWork W2823297684 @default.
- W2950654487 isParatext "false" @default.
- W2950654487 isRetracted "false" @default.
- W2950654487 magId "2950654487" @default.
- W2950654487 workType "article" @default.