Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950657043> ?p ?o ?g. }
- W2950657043 abstract "Use of accelerometers is now widespread within animal biotelemetry as they provide a means of measuring an animal's activity in a meaningful and quantitative way where direct observation is not possible. In sequential acceleration data there is a natural dependence between observations of movement or behaviour, a fact that has been largely ignored in most analyses. Analyses of acceleration data where serial dependence has been explicitly modelled have largely relied on hidden Markov models (HMMs). Depending on the aim of an analysis, either a supervised or an unsupervised learning approach can be applied. Under a supervised context, an HMM is trained to classify unlabelled acceleration data into a finite set of pre-specified categories, whereas we will demonstrate how an unsupervised learning approach can be used to infer new aspects of animal behaviour. We will provide the details necessary to implement and assess an HMM in both the supervised and unsupervised context, and discuss the data requirements of each case. We outline two applications to marine and aerial systems (sharks and eagles) taking the unsupervised approach, which is more readily applicable to animal activity measured in the field. HMMs were used to infer the effects of temporal, atmospheric and tidal inputs on animal behaviour. Animal accelerometer data allow ecologists to identify important correlates and drivers of animal activity (and hence behaviour). The HMM framework is well suited to deal with the main features commonly observed in accelerometer data. The ability to combine direct observations of animals activity and combine it with statistical models which account for the features of accelerometer data offer a new way to quantify animal behaviour, energetic expenditure and deepen our insights into individual behaviour as a constituent of populations and ecosystems." @default.
- W2950657043 created "2019-06-27" @default.
- W2950657043 creator A5015976127 @default.
- W2950657043 creator A5016052842 @default.
- W2950657043 creator A5034910630 @default.
- W2950657043 creator A5037665267 @default.
- W2950657043 creator A5045313805 @default.
- W2950657043 creator A5048579847 @default.
- W2950657043 creator A5053423596 @default.
- W2950657043 date "2016-02-20" @default.
- W2950657043 modified "2023-10-16" @default.
- W2950657043 title "Analysis of animal accelerometer data using hidden Markov models" @default.
- W2950657043 cites W1501760102 @default.
- W2950657043 cites W1513626006 @default.
- W2950657043 cites W1636244751 @default.
- W2950657043 cites W1786819714 @default.
- W2950657043 cites W1867214854 @default.
- W2950657043 cites W1882651929 @default.
- W2950657043 cites W1905499514 @default.
- W2950657043 cites W1922885767 @default.
- W2950657043 cites W1965483546 @default.
- W2950657043 cites W1976729924 @default.
- W2950657043 cites W2011788988 @default.
- W2950657043 cites W2015076910 @default.
- W2950657043 cites W2034009044 @default.
- W2950657043 cites W2058294613 @default.
- W2950657043 cites W2079634619 @default.
- W2950657043 cites W2094353923 @default.
- W2950657043 cites W2095340601 @default.
- W2950657043 cites W2097904204 @default.
- W2950657043 cites W2098208279 @default.
- W2950657043 cites W2102346870 @default.
- W2950657043 cites W2105046342 @default.
- W2950657043 cites W2107687774 @default.
- W2950657043 cites W2108590926 @default.
- W2950657043 cites W2108916750 @default.
- W2950657043 cites W2115060667 @default.
- W2950657043 cites W2121270505 @default.
- W2950657043 cites W2123504417 @default.
- W2950657043 cites W2127095067 @default.
- W2950657043 cites W2128844853 @default.
- W2950657043 cites W2129784757 @default.
- W2950657043 cites W2130569713 @default.
- W2950657043 cites W2136375252 @default.
- W2950657043 cites W2139861269 @default.
- W2950657043 cites W2142270948 @default.
- W2950657043 cites W2145528623 @default.
- W2950657043 cites W2146565992 @default.
- W2950657043 cites W2157657991 @default.
- W2950657043 cites W2166712377 @default.
- W2950657043 cites W2263874189 @default.
- W2950657043 cites W98188630 @default.
- W2950657043 hasPublicationYear "2016" @default.
- W2950657043 type Work @default.
- W2950657043 sameAs 2950657043 @default.
- W2950657043 citedByCount "0" @default.
- W2950657043 crossrefType "posted-content" @default.
- W2950657043 hasAuthorship W2950657043A5015976127 @default.
- W2950657043 hasAuthorship W2950657043A5016052842 @default.
- W2950657043 hasAuthorship W2950657043A5034910630 @default.
- W2950657043 hasAuthorship W2950657043A5037665267 @default.
- W2950657043 hasAuthorship W2950657043A5045313805 @default.
- W2950657043 hasAuthorship W2950657043A5048579847 @default.
- W2950657043 hasAuthorship W2950657043A5053423596 @default.
- W2950657043 hasConcept C111919701 @default.
- W2950657043 hasConcept C117896860 @default.
- W2950657043 hasConcept C119857082 @default.
- W2950657043 hasConcept C121332964 @default.
- W2950657043 hasConcept C136389625 @default.
- W2950657043 hasConcept C154945302 @default.
- W2950657043 hasConcept C166957645 @default.
- W2950657043 hasConcept C177264268 @default.
- W2950657043 hasConcept C183121708 @default.
- W2950657043 hasConcept C192278026 @default.
- W2950657043 hasConcept C199360897 @default.
- W2950657043 hasConcept C205649164 @default.
- W2950657043 hasConcept C23224414 @default.
- W2950657043 hasConcept C2779343474 @default.
- W2950657043 hasConcept C41008148 @default.
- W2950657043 hasConcept C50644808 @default.
- W2950657043 hasConcept C74650414 @default.
- W2950657043 hasConcept C76155785 @default.
- W2950657043 hasConcept C8038995 @default.
- W2950657043 hasConcept C89805583 @default.
- W2950657043 hasConceptScore W2950657043C111919701 @default.
- W2950657043 hasConceptScore W2950657043C117896860 @default.
- W2950657043 hasConceptScore W2950657043C119857082 @default.
- W2950657043 hasConceptScore W2950657043C121332964 @default.
- W2950657043 hasConceptScore W2950657043C136389625 @default.
- W2950657043 hasConceptScore W2950657043C154945302 @default.
- W2950657043 hasConceptScore W2950657043C166957645 @default.
- W2950657043 hasConceptScore W2950657043C177264268 @default.
- W2950657043 hasConceptScore W2950657043C183121708 @default.
- W2950657043 hasConceptScore W2950657043C192278026 @default.
- W2950657043 hasConceptScore W2950657043C199360897 @default.
- W2950657043 hasConceptScore W2950657043C205649164 @default.
- W2950657043 hasConceptScore W2950657043C23224414 @default.
- W2950657043 hasConceptScore W2950657043C2779343474 @default.
- W2950657043 hasConceptScore W2950657043C41008148 @default.
- W2950657043 hasConceptScore W2950657043C50644808 @default.