Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950680182> ?p ?o ?g. }
- W2950680182 endingPage "287" @default.
- W2950680182 startingPage "276" @default.
- W2950680182 abstract "Some forms of mild cognitive impairment (MCI) are the clinical precursors of Alzheimer's disease (AD), while other MCI types tend to remain stable over-time and do not progress to AD. To identify and choose effective and personalized strategies to prevent or slow the progression of AD, we need to develop objective measures that are able to discriminate the MCI patients who are at risk of AD from those MCI patients who have less risk to develop AD. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying MCI patients who have a high likelihood of developing AD within 3 years. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genetic data as input measures. The most novel characteristics of our machine learning model compared to previous ones are the following: 1) our deep learning model is multi-tasking, in the sense that it jointly learns to simultaneously predict both MCI to AD conversion as well as AD vs. healthy controls classification, which facilitates relevant feature extraction for AD prognostication; 2) the neural network classifier employs fewer parameters than other deep learning architectures which significantly limits data-overfitting (we use ∼550,000 network parameters, which is orders of magnitude lower than other network designs); 3) both structural MRI images and their warp field characteristics, which quantify local volumetric changes in relation to the MRI template, were used as separate input streams to extract as much information as possible from the MRI data. All analyses were performed on a subset of the database made publicly available via the Alzheimer's Disease Neuroimaging Initiative (ADNI), (n = 785 participants, n = 192 AD patients, n = 409 MCI patients (including both MCI patients who convert to AD and MCI patients who do not covert to AD), and n = 184 healthy controls). The most predictive combination of inputs were the structural MRI images and the demographic, neuropsychological, and APOe4 data. In contrast, the warp field metrics were of little added predictive value. The algorithm was able to distinguish the MCI patients developing AD within 3 years from those patients with stable MCI over the same time-period with an area under the curve (AUC) of 0.925 and a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5%, and specificity of 85%. To our knowledge, this is the highest performance achieved so far using similar datasets. The same network provided an AUC of 1 and 100% accuracy, sensitivity, and specificity when classifying patients with AD from healthy controls. Our classification framework was also robust to the use of different co-registration templates and potentially irrelevant features/image portions. Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and diverse other sets of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of several medical conditions and neuropsychiatric disorders via multi-modal imaging and tabular clinical data." @default.
- W2950680182 created "2019-06-27" @default.
- W2950680182 creator A5010629974 @default.
- W2950680182 creator A5015529755 @default.
- W2950680182 creator A5025775404 @default.
- W2950680182 creator A5031935895 @default.
- W2950680182 creator A5056748708 @default.
- W2950680182 date "2019-04-01" @default.
- W2950680182 modified "2023-10-17" @default.
- W2950680182 title "A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease" @default.
- W2950680182 cites W1516122793 @default.
- W2950680182 cites W1554171816 @default.
- W2950680182 cites W1605885548 @default.
- W2950680182 cites W1967251218 @default.
- W2950680182 cites W1967737804 @default.
- W2950680182 cites W1978763244 @default.
- W2950680182 cites W1995277044 @default.
- W2950680182 cites W1997313699 @default.
- W2950680182 cites W2014886338 @default.
- W2950680182 cites W2025693096 @default.
- W2950680182 cites W2053836765 @default.
- W2950680182 cites W2060212076 @default.
- W2950680182 cites W2065535274 @default.
- W2950680182 cites W2093488421 @default.
- W2950680182 cites W2093602450 @default.
- W2950680182 cites W2096963202 @default.
- W2950680182 cites W2102508963 @default.
- W2950680182 cites W2107564884 @default.
- W2950680182 cites W2117539524 @default.
- W2950680182 cites W2123225824 @default.
- W2950680182 cites W2129965408 @default.
- W2950680182 cites W2134372736 @default.
- W2950680182 cites W2136145485 @default.
- W2950680182 cites W2136520115 @default.
- W2950680182 cites W2138878035 @default.
- W2950680182 cites W2161737267 @default.
- W2950680182 cites W2170945547 @default.
- W2950680182 cites W2281498324 @default.
- W2950680182 cites W2593212236 @default.
- W2950680182 cites W2593468621 @default.
- W2950680182 cites W2594998925 @default.
- W2950680182 cites W2782731988 @default.
- W2950680182 cites W2791282053 @default.
- W2950680182 cites W2793804994 @default.
- W2950680182 cites W2803452763 @default.
- W2950680182 cites W2964171289 @default.
- W2950680182 cites W2977883299 @default.
- W2950680182 doi "https://doi.org/10.1016/j.neuroimage.2019.01.031" @default.
- W2950680182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30654174" @default.
- W2950680182 hasPublicationYear "2019" @default.
- W2950680182 type Work @default.
- W2950680182 sameAs 2950680182 @default.
- W2950680182 citedByCount "229" @default.
- W2950680182 countsByYear W29506801822019 @default.
- W2950680182 countsByYear W29506801822020 @default.
- W2950680182 countsByYear W29506801822021 @default.
- W2950680182 countsByYear W29506801822022 @default.
- W2950680182 countsByYear W29506801822023 @default.
- W2950680182 crossrefType "journal-article" @default.
- W2950680182 hasAuthorship W2950680182A5010629974 @default.
- W2950680182 hasAuthorship W2950680182A5015529755 @default.
- W2950680182 hasAuthorship W2950680182A5025775404 @default.
- W2950680182 hasAuthorship W2950680182A5031935895 @default.
- W2950680182 hasAuthorship W2950680182A5056748708 @default.
- W2950680182 hasBestOaLocation W29506801821 @default.
- W2950680182 hasConcept C108583219 @default.
- W2950680182 hasConcept C119857082 @default.
- W2950680182 hasConcept C14216870 @default.
- W2950680182 hasConcept C153180895 @default.
- W2950680182 hasConcept C154945302 @default.
- W2950680182 hasConcept C15744967 @default.
- W2950680182 hasConcept C169760540 @default.
- W2950680182 hasConcept C169900460 @default.
- W2950680182 hasConcept C22019652 @default.
- W2950680182 hasConcept C2984915365 @default.
- W2950680182 hasConcept C41008148 @default.
- W2950680182 hasConcept C50644808 @default.
- W2950680182 hasConceptScore W2950680182C108583219 @default.
- W2950680182 hasConceptScore W2950680182C119857082 @default.
- W2950680182 hasConceptScore W2950680182C14216870 @default.
- W2950680182 hasConceptScore W2950680182C153180895 @default.
- W2950680182 hasConceptScore W2950680182C154945302 @default.
- W2950680182 hasConceptScore W2950680182C15744967 @default.
- W2950680182 hasConceptScore W2950680182C169760540 @default.
- W2950680182 hasConceptScore W2950680182C169900460 @default.
- W2950680182 hasConceptScore W2950680182C22019652 @default.
- W2950680182 hasConceptScore W2950680182C2984915365 @default.
- W2950680182 hasConceptScore W2950680182C41008148 @default.
- W2950680182 hasConceptScore W2950680182C50644808 @default.
- W2950680182 hasFunder F4320332161 @default.
- W2950680182 hasFunder F4320334626 @default.
- W2950680182 hasFunder F4320334627 @default.
- W2950680182 hasFunder F4320337337 @default.
- W2950680182 hasLocation W29506801821 @default.
- W2950680182 hasLocation W29506801822 @default.
- W2950680182 hasLocation W29506801823 @default.
- W2950680182 hasOpenAccess W2950680182 @default.
- W2950680182 hasPrimaryLocation W29506801821 @default.