Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950722969> ?p ?o ?g. }
- W2950722969 endingPage "92" @default.
- W2950722969 startingPage "19" @default.
- W2950722969 abstract "Physics and finance are both fundamentally based on the theory of random walks (and their generalizations to higher dimensions) and on the collective behavior of large numbers of correlated variables. The archetype examplifying this situation in finance is the portfolio optimization problem in which one desires to diversify on a set of possibly dependent assets to optimize the return and minimize the risks. The standard mean-variance solution introduced by Markovitz and its subsequent developments is basically a mean-field Gaussian solution. It has severe limitations for practical applications due to the strongly non-Gaussian structure of distributions and the nonlinear dependence between assets. Here, we present in details a general analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto Gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a nonlinear covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good conditioning. The portfolio distribution is then obtained as the solution of a mapping to a so-called φq field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The interaction (non-mean field) structure in this field theory is a direct consequence of the non-Gaussian nature of the distribution of asset price returns. We find that minimizing the portfolio variance (i.e. the relatively “small” risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive empirical tests are presented on the foreign exchange market that validate satisfactorily the theory. For “fat tail” distributions, we show that an adequate prediction of the risks of a portfolio relies much more on the correct description of the tail structure rather than on their correlations. For the case of asymmetric return distributions, our theory allows us to generalize the return-risk efficient frontier concept to incorporate the dimensions of large risks embedded in the tail of the asset distributions. We demonstrate that it is often possible to increase the portfolio return while decreasing the large risks as quantified by the fourth and higher-order cumulants. Exact theoretical formulas are validated by empirical tests." @default.
- W2950722969 created "2019-06-27" @default.
- W2950722969 creator A5057002364 @default.
- W2950722969 creator A5058229418 @default.
- W2950722969 creator A5081946805 @default.
- W2950722969 date "2000-08-01" @default.
- W2950722969 modified "2023-09-30" @default.
- W2950722969 title "φq-field theory for portfolio optimization: “fat tails” and nonlinear correlations" @default.
- W2950722969 cites W1491718027 @default.
- W2950722969 cites W1534803028 @default.
- W2950722969 cites W1557758852 @default.
- W2950722969 cites W1576326745 @default.
- W2950722969 cites W1973458764 @default.
- W2950722969 cites W1979575715 @default.
- W2950722969 cites W2002815599 @default.
- W2950722969 cites W2008435290 @default.
- W2950722969 cites W2016130389 @default.
- W2950722969 cites W2017891730 @default.
- W2950722969 cites W2037593713 @default.
- W2950722969 cites W2042877521 @default.
- W2950722969 cites W2044793768 @default.
- W2950722969 cites W2047118428 @default.
- W2950722969 cites W2059426864 @default.
- W2950722969 cites W2061735246 @default.
- W2950722969 cites W2071957771 @default.
- W2950722969 cites W2075567644 @default.
- W2950722969 cites W2078206416 @default.
- W2950722969 cites W2098612888 @default.
- W2950722969 cites W2112799706 @default.
- W2950722969 cites W2125562482 @default.
- W2950722969 cites W2141863469 @default.
- W2950722969 cites W2144846366 @default.
- W2950722969 cites W2166219456 @default.
- W2950722969 cites W2465940576 @default.
- W2950722969 cites W2502254989 @default.
- W2950722969 cites W2673625941 @default.
- W2950722969 cites W2795413297 @default.
- W2950722969 cites W2796930440 @default.
- W2950722969 cites W2994310245 @default.
- W2950722969 cites W3104713824 @default.
- W2950722969 cites W3122675353 @default.
- W2950722969 cites W613421535 @default.
- W2950722969 cites W1524124716 @default.
- W2950722969 doi "https://doi.org/10.1016/s0370-1573(00)00004-1" @default.
- W2950722969 hasPublicationYear "2000" @default.
- W2950722969 type Work @default.
- W2950722969 sameAs 2950722969 @default.
- W2950722969 citedByCount "54" @default.
- W2950722969 countsByYear W29507229692012 @default.
- W2950722969 countsByYear W29507229692013 @default.
- W2950722969 countsByYear W29507229692014 @default.
- W2950722969 countsByYear W29507229692015 @default.
- W2950722969 countsByYear W29507229692016 @default.
- W2950722969 countsByYear W29507229692018 @default.
- W2950722969 countsByYear W29507229692020 @default.
- W2950722969 countsByYear W29507229692022 @default.
- W2950722969 crossrefType "journal-article" @default.
- W2950722969 hasAuthorship W2950722969A5057002364 @default.
- W2950722969 hasAuthorship W2950722969A5058229418 @default.
- W2950722969 hasAuthorship W2950722969A5081946805 @default.
- W2950722969 hasBestOaLocation W29507229692 @default.
- W2950722969 hasConcept C10138342 @default.
- W2950722969 hasConcept C105795698 @default.
- W2950722969 hasConcept C121332964 @default.
- W2950722969 hasConcept C121864883 @default.
- W2950722969 hasConcept C122123141 @default.
- W2950722969 hasConcept C158622935 @default.
- W2950722969 hasConcept C161584116 @default.
- W2950722969 hasConcept C162324750 @default.
- W2950722969 hasConcept C163716315 @default.
- W2950722969 hasConcept C165216359 @default.
- W2950722969 hasConcept C177384507 @default.
- W2950722969 hasConcept C178650346 @default.
- W2950722969 hasConcept C185142706 @default.
- W2950722969 hasConcept C202655437 @default.
- W2950722969 hasConcept C2780821815 @default.
- W2950722969 hasConcept C28826006 @default.
- W2950722969 hasConcept C33923547 @default.
- W2950722969 hasConcept C62520636 @default.
- W2950722969 hasConcept C9725762 @default.
- W2950722969 hasConceptScore W2950722969C10138342 @default.
- W2950722969 hasConceptScore W2950722969C105795698 @default.
- W2950722969 hasConceptScore W2950722969C121332964 @default.
- W2950722969 hasConceptScore W2950722969C121864883 @default.
- W2950722969 hasConceptScore W2950722969C122123141 @default.
- W2950722969 hasConceptScore W2950722969C158622935 @default.
- W2950722969 hasConceptScore W2950722969C161584116 @default.
- W2950722969 hasConceptScore W2950722969C162324750 @default.
- W2950722969 hasConceptScore W2950722969C163716315 @default.
- W2950722969 hasConceptScore W2950722969C165216359 @default.
- W2950722969 hasConceptScore W2950722969C177384507 @default.
- W2950722969 hasConceptScore W2950722969C178650346 @default.
- W2950722969 hasConceptScore W2950722969C185142706 @default.
- W2950722969 hasConceptScore W2950722969C202655437 @default.
- W2950722969 hasConceptScore W2950722969C2780821815 @default.
- W2950722969 hasConceptScore W2950722969C28826006 @default.
- W2950722969 hasConceptScore W2950722969C33923547 @default.
- W2950722969 hasConceptScore W2950722969C62520636 @default.