Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950725863> ?p ?o ?g. }
- W2950725863 endingPage "53" @default.
- W2950725863 startingPage "1041" @default.
- W2950725863 abstract "Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal carbonyls, carbon dioxide also offers interesting options. Industrial chemists seek easy to prepare catalysts and patent-free ligands/complexes. In addition, non-noble metal complexes will interest both academic and industrial researchers. The novel Lucite process for methyl methacrylate is an important example of an improved catalyst. This reaction makes use of a specific palladium/bisphosphine catalyst, which led to the successful implementation of the technology. More active and productive catalysts for related carbonylations of less reactive olefins would allow for other large scale applications of this methodology. From an academic point of view, researchers continue to look for selective reactions with more functionalized olefins. Finally, because of the volatility of simple metal carbonyl complexes, carbonylation reactions today remain a domain of homogeneous catalysis. The invention of more stable and recyclable heterogeneous catalysts or metal-free carbonylations (radical carbonylations) will be difficult, but could offer interesting challenges for young chemists." @default.
- W2950725863 created "2019-06-27" @default.
- W2950725863 creator A5005182277 @default.
- W2950725863 creator A5010004471 @default.
- W2950725863 creator A5025143275 @default.
- W2950725863 creator A5033938012 @default.
- W2950725863 creator A5063036215 @default.
- W2950725863 creator A5075108316 @default.
- W2950725863 date "2014-04-15" @default.
- W2950725863 modified "2023-10-18" @default.
- W2950725863 title "Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account." @default.
- W2950725863 cites W1968465015 @default.
- W2950725863 cites W1969303407 @default.
- W2950725863 cites W1970281403 @default.
- W2950725863 cites W1974732177 @default.
- W2950725863 cites W1977320763 @default.
- W2950725863 cites W1978288833 @default.
- W2950725863 cites W1989008982 @default.
- W2950725863 cites W1997881454 @default.
- W2950725863 cites W1998697871 @default.
- W2950725863 cites W2000028896 @default.
- W2950725863 cites W2001018365 @default.
- W2950725863 cites W2008169302 @default.
- W2950725863 cites W2010253093 @default.
- W2950725863 cites W2023911763 @default.
- W2950725863 cites W2031472322 @default.
- W2950725863 cites W2047331408 @default.
- W2950725863 cites W2051543432 @default.
- W2950725863 cites W2059910647 @default.
- W2950725863 cites W2069282965 @default.
- W2950725863 cites W2082893498 @default.
- W2950725863 cites W2091753819 @default.
- W2950725863 cites W2101772723 @default.
- W2950725863 cites W2109056364 @default.
- W2950725863 cites W2112393465 @default.
- W2950725863 cites W2122321303 @default.
- W2950725863 cites W2129559943 @default.
- W2950725863 cites W2137261850 @default.
- W2950725863 cites W2143876258 @default.
- W2950725863 cites W2150845499 @default.
- W2950725863 cites W2153696186 @default.
- W2950725863 cites W2162600945 @default.
- W2950725863 cites W2166731204 @default.
- W2950725863 cites W2314789718 @default.
- W2950725863 cites W2333194251 @default.
- W2950725863 cites W2505968698 @default.
- W2950725863 cites W2950895984 @default.
- W2950725863 cites W2951189101 @default.
- W2950725863 cites W2952019070 @default.
- W2950725863 cites W2952809220 @default.
- W2950725863 cites W4211046907 @default.
- W2950725863 cites W4248484987 @default.
- W2950725863 cites W66461769 @default.
- W2950725863 doi "https://doi.org/10.1021/ar400222k" @default.
- W2950725863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24564478" @default.
- W2950725863 hasPublicationYear "2014" @default.
- W2950725863 type Work @default.
- W2950725863 sameAs 2950725863 @default.
- W2950725863 citedByCount "417" @default.
- W2950725863 countsByYear W29507258632014 @default.
- W2950725863 countsByYear W29507258632015 @default.
- W2950725863 countsByYear W29507258632016 @default.
- W2950725863 countsByYear W29507258632017 @default.
- W2950725863 countsByYear W29507258632018 @default.
- W2950725863 countsByYear W29507258632019 @default.
- W2950725863 countsByYear W29507258632020 @default.
- W2950725863 countsByYear W29507258632021 @default.
- W2950725863 countsByYear W29507258632022 @default.
- W2950725863 countsByYear W29507258632023 @default.
- W2950725863 crossrefType "journal-article" @default.
- W2950725863 hasAuthorship W2950725863A5005182277 @default.
- W2950725863 hasAuthorship W2950725863A5010004471 @default.
- W2950725863 hasAuthorship W2950725863A5025143275 @default.
- W2950725863 hasAuthorship W2950725863A5033938012 @default.
- W2950725863 hasAuthorship W2950725863A5063036215 @default.
- W2950725863 hasAuthorship W2950725863A5075108316 @default.
- W2950725863 hasConcept C100805817 @default.
- W2950725863 hasConcept C109474758 @default.
- W2950725863 hasConcept C161790260 @default.
- W2950725863 hasConcept C168382676 @default.
- W2950725863 hasConcept C178790620 @default.
- W2950725863 hasConcept C178907741 @default.
- W2950725863 hasConcept C185592680 @default.
- W2950725863 hasConcept C38316802 @default.
- W2950725863 hasConcept C512735826 @default.
- W2950725863 hasConcept C521398313 @default.
- W2950725863 hasConceptScore W2950725863C100805817 @default.
- W2950725863 hasConceptScore W2950725863C109474758 @default.
- W2950725863 hasConceptScore W2950725863C161790260 @default.
- W2950725863 hasConceptScore W2950725863C168382676 @default.
- W2950725863 hasConceptScore W2950725863C178790620 @default.
- W2950725863 hasConceptScore W2950725863C178907741 @default.
- W2950725863 hasConceptScore W2950725863C185592680 @default.
- W2950725863 hasConceptScore W2950725863C38316802 @default.
- W2950725863 hasConceptScore W2950725863C512735826 @default.
- W2950725863 hasConceptScore W2950725863C521398313 @default.
- W2950725863 hasIssue "4" @default.
- W2950725863 hasLocation W29507258631 @default.