Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950775194> ?p ?o ?g. }
- W2950775194 abstract "The leaf, as the vital part of plants, can be affected by physical and physiological factors which might lead to changes in its shape, color and size. These unique parts play an essential role in the design and implementation of plant recognition systems, as the shapes of leaves vary among different plants. Weather type and related factors, such as light intensity, humidity, temperature and wind-speed, may have effects on the number of leaves that grow on a plant, the amount of fresh and dried leaves, the deformation of leaves, color of leaves, positions of leaves on branches, etc. In addition, photographing in outdoor environments with different weather conditions has undesired impacts on images. For instance, light scattering changes severely when there are water droplets during photographing which influences the images captured in rainy weather. Despite the importance of the proposed factors and the relevant effects on the plants, leaves and images taken from plants, a plant recognition system should be independent from all environmental and non-environmental factors to be practically useful and applicable for identifying plant species in uncontrolled outdoor environments. Moreover, changes in the time of day (morning, noon and evening), the distance between camera and plant species as well as the angle and illumination of the object and environment when the images are taken should be considered in the process of plant recognition. For instance, in a windy weather condition, for an observer even from a short distance, it is challenging to distinguish all single leaves and identify the plant type from the shape of its leaf. Furthermore, the unstructured background of the images is another challenge which affects the images captured in fields and outdoor environments. These are only some difficulties for identification of plants in natural environments such as farms, forests, etc. A consideration of mentioned factors contributes to developing a novel, efficient and accurate system for plant recognition that can be used in various uncontrolled outdoor environments. In the real-life, the images of the plants captured with the presence of these factors are very challenging for recognizing plant species and it is a desire to develop an efficient and accurate system that can be used in various natural conditions and uncontrolled situations. This paper presents the development and implementation of a convolutional neural network for automatic plant recognition in uncontrolled outdoor environments. The deep network has been used to recognize four different natural plant species. The proposed system brings the opportunity and transformative potential of deep neural networks to the plant recognition field. This fully-automatic system is efficient and generalized for recognition of plants in outdoor environments like forests and farms, and its the accuracy is 99.5%. Meanwhile, the final system has the functionality of being applied as a real-time one." @default.
- W2950775194 created "2019-06-27" @default.
- W2950775194 creator A5019808383 @default.
- W2950775194 creator A5028265543 @default.
- W2950775194 creator A5059359290 @default.
- W2950775194 date "2019-06-20" @default.
- W2950775194 modified "2023-10-17" @default.
- W2950775194 title "Fully-automatic natural plant recognition system using deep neural network for dynamic outdoor environments" @default.
- W2950775194 cites W1529920312 @default.
- W2950775194 cites W1532362218 @default.
- W2950775194 cites W1612366852 @default.
- W2950775194 cites W1677409904 @default.
- W2950775194 cites W1965824344 @default.
- W2950775194 cites W1998399571 @default.
- W2950775194 cites W2012576166 @default.
- W2950775194 cites W2022754289 @default.
- W2950775194 cites W2052525269 @default.
- W2950775194 cites W2052570068 @default.
- W2950775194 cites W2059471852 @default.
- W2950775194 cites W2061212083 @default.
- W2950775194 cites W2097117768 @default.
- W2950775194 cites W2111308925 @default.
- W2950775194 cites W2112796928 @default.
- W2950775194 cites W2124386111 @default.
- W2950775194 cites W2136915956 @default.
- W2950775194 cites W2140519023 @default.
- W2950775194 cites W2155893237 @default.
- W2950775194 cites W2170049341 @default.
- W2950775194 cites W2905485021 @default.
- W2950775194 cites W2911964244 @default.
- W2950775194 doi "https://doi.org/10.1007/s42452-019-0785-9" @default.
- W2950775194 hasPublicationYear "2019" @default.
- W2950775194 type Work @default.
- W2950775194 sameAs 2950775194 @default.
- W2950775194 citedByCount "9" @default.
- W2950775194 countsByYear W29507751942019 @default.
- W2950775194 countsByYear W29507751942020 @default.
- W2950775194 countsByYear W29507751942021 @default.
- W2950775194 countsByYear W29507751942022 @default.
- W2950775194 countsByYear W29507751942023 @default.
- W2950775194 crossrefType "journal-article" @default.
- W2950775194 hasAuthorship W2950775194A5019808383 @default.
- W2950775194 hasAuthorship W2950775194A5028265543 @default.
- W2950775194 hasAuthorship W2950775194A5059359290 @default.
- W2950775194 hasBestOaLocation W29507751941 @default.
- W2950775194 hasConcept C107775477 @default.
- W2950775194 hasConcept C120665830 @default.
- W2950775194 hasConcept C121332964 @default.
- W2950775194 hasConcept C127313418 @default.
- W2950775194 hasConcept C151420433 @default.
- W2950775194 hasConcept C153294291 @default.
- W2950775194 hasConcept C154945302 @default.
- W2950775194 hasConcept C161067210 @default.
- W2950775194 hasConcept C205649164 @default.
- W2950775194 hasConcept C2985179745 @default.
- W2950775194 hasConcept C3020368824 @default.
- W2950775194 hasConcept C31972630 @default.
- W2950775194 hasConcept C39432304 @default.
- W2950775194 hasConcept C41008148 @default.
- W2950775194 hasConcept C58650310 @default.
- W2950775194 hasConcept C59822182 @default.
- W2950775194 hasConcept C62649853 @default.
- W2950775194 hasConcept C86803240 @default.
- W2950775194 hasConcept C91586092 @default.
- W2950775194 hasConceptScore W2950775194C107775477 @default.
- W2950775194 hasConceptScore W2950775194C120665830 @default.
- W2950775194 hasConceptScore W2950775194C121332964 @default.
- W2950775194 hasConceptScore W2950775194C127313418 @default.
- W2950775194 hasConceptScore W2950775194C151420433 @default.
- W2950775194 hasConceptScore W2950775194C153294291 @default.
- W2950775194 hasConceptScore W2950775194C154945302 @default.
- W2950775194 hasConceptScore W2950775194C161067210 @default.
- W2950775194 hasConceptScore W2950775194C205649164 @default.
- W2950775194 hasConceptScore W2950775194C2985179745 @default.
- W2950775194 hasConceptScore W2950775194C3020368824 @default.
- W2950775194 hasConceptScore W2950775194C31972630 @default.
- W2950775194 hasConceptScore W2950775194C39432304 @default.
- W2950775194 hasConceptScore W2950775194C41008148 @default.
- W2950775194 hasConceptScore W2950775194C58650310 @default.
- W2950775194 hasConceptScore W2950775194C59822182 @default.
- W2950775194 hasConceptScore W2950775194C62649853 @default.
- W2950775194 hasConceptScore W2950775194C86803240 @default.
- W2950775194 hasConceptScore W2950775194C91586092 @default.
- W2950775194 hasIssue "7" @default.
- W2950775194 hasLocation W29507751941 @default.
- W2950775194 hasOpenAccess W2950775194 @default.
- W2950775194 hasPrimaryLocation W29507751941 @default.
- W2950775194 hasRelatedWork W2024668895 @default.
- W2950775194 hasRelatedWork W2167286925 @default.
- W2950775194 hasRelatedWork W2393831273 @default.
- W2950775194 hasRelatedWork W2461254192 @default.
- W2950775194 hasRelatedWork W2626243216 @default.
- W2950775194 hasRelatedWork W2999638788 @default.
- W2950775194 hasRelatedWork W3163056251 @default.
- W2950775194 hasRelatedWork W4298364958 @default.
- W2950775194 hasRelatedWork W4299322864 @default.
- W2950775194 hasRelatedWork W4320087292 @default.
- W2950775194 hasVolume "1" @default.
- W2950775194 isParatext "false" @default.
- W2950775194 isRetracted "false" @default.