Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950792054> ?p ?o ?g. }
- W2950792054 abstract "Bayesian optimization has become a fundamental global optimization algorithm in many problems where sample efficiency is of paramount importance. Recently, there has been proposed a large number of new applications in fields such as robotics, machine learning, experimental design, simulation, etc. In this paper, we focus on several problems that appear in robotics and autonomous systems: algorithm tuning, automatic control and intelligent design. All those problems can be mapped to global optimization problems. However, they become hard optimization problems. Bayesian optimization internally uses a probabilistic surrogate model (e.g.: Gaussian process) to learn from the process and reduce the number of samples required. In order to generalize to unknown functions in a black-box fashion, the common assumption is that the underlying function can be modeled with a stationary process. Nonstationary Gaussian process regression cannot generalize easily and it typically requires prior knowledge of the function. Some works have designed techniques to generalize Bayesian optimization to nonstationary functions in an indirect way, but using techniques originally designed for regression, where the objective is to improve the quality of the surrogate model everywhere. Instead optimization should focus on improving the surrogate model near the optimum. In this paper, we present a novel kernel function specially designed for Bayesian optimization, that allows nonstationary behavior of the surrogate model in an adaptive local region. In our experiments, we found that this new kernel results in an improved local search (exploitation), without penalizing the global search (exploration). We provide results in well-known benchmarks and real applications. The new method outperforms the state of the art in Bayesian optimization both in stationary and nonstationary problems." @default.
- W2950792054 created "2019-06-27" @default.
- W2950792054 creator A5049372967 @default.
- W2950792054 date "2016-10-02" @default.
- W2950792054 modified "2023-09-27" @default.
- W2950792054 title "Funneled Bayesian Optimization for Design, Tuning and Control of Autonomous Systems" @default.
- W2950792054 cites W1155403144 @default.
- W2950792054 cites W118209859 @default.
- W2950792054 cites W147369072 @default.
- W2950792054 cites W1504362584 @default.
- W2950792054 cites W1510052597 @default.
- W2950792054 cites W1511947404 @default.
- W2950792054 cites W1531831816 @default.
- W2950792054 cites W1534033123 @default.
- W2950792054 cites W1573878755 @default.
- W2950792054 cites W1693986406 @default.
- W2950792054 cites W1701825639 @default.
- W2950792054 cites W1869122955 @default.
- W2950792054 cites W1871676304 @default.
- W2950792054 cites W190473450 @default.
- W2950792054 cites W1967157470 @default.
- W2950792054 cites W1974463601 @default.
- W2950792054 cites W1993271327 @default.
- W2950792054 cites W2013695155 @default.
- W2950792054 cites W2018044188 @default.
- W2950792054 cites W2021774297 @default.
- W2950792054 cites W202805564 @default.
- W2950792054 cites W2050497240 @default.
- W2950792054 cites W2063180182 @default.
- W2950792054 cites W2066763648 @default.
- W2950792054 cites W2070678636 @default.
- W2950792054 cites W2070784071 @default.
- W2950792054 cites W2081348312 @default.
- W2950792054 cites W2096649264 @default.
- W2950792054 cites W2099201756 @default.
- W2950792054 cites W2106411961 @default.
- W2950792054 cites W2118948426 @default.
- W2950792054 cites W2119717200 @default.
- W2950792054 cites W2121658992 @default.
- W2950792054 cites W2121863487 @default.
- W2950792054 cites W2131241448 @default.
- W2950792054 cites W2131612655 @default.
- W2950792054 cites W2133104104 @default.
- W2950792054 cites W2133261881 @default.
- W2950792054 cites W2135348862 @default.
- W2950792054 cites W2135571735 @default.
- W2950792054 cites W2136213019 @default.
- W2950792054 cites W2139805416 @default.
- W2950792054 cites W2139929624 @default.
- W2950792054 cites W2139998722 @default.
- W2950792054 cites W2149721706 @default.
- W2950792054 cites W2151238122 @default.
- W2950792054 cites W2167789032 @default.
- W2950792054 cites W2169003314 @default.
- W2950792054 cites W2226783037 @default.
- W2950792054 cites W2296059279 @default.
- W2950792054 cites W2312609093 @default.
- W2950792054 cites W2950277768 @default.
- W2950792054 cites W2951023755 @default.
- W2950792054 cites W2951665052 @default.
- W2950792054 cites W2952908320 @default.
- W2950792054 cites W2953308237 @default.
- W2950792054 cites W60686164 @default.
- W2950792054 cites W770013183 @default.
- W2950792054 cites W84569508 @default.
- W2950792054 hasPublicationYear "2016" @default.
- W2950792054 type Work @default.
- W2950792054 sameAs 2950792054 @default.
- W2950792054 citedByCount "0" @default.
- W2950792054 crossrefType "posted-content" @default.
- W2950792054 hasAuthorship W2950792054A5049372967 @default.
- W2950792054 hasConcept C107673813 @default.
- W2950792054 hasConcept C11413529 @default.
- W2950792054 hasConcept C114614502 @default.
- W2950792054 hasConcept C119857082 @default.
- W2950792054 hasConcept C121332964 @default.
- W2950792054 hasConcept C126255220 @default.
- W2950792054 hasConcept C131675550 @default.
- W2950792054 hasConcept C137836250 @default.
- W2950792054 hasConcept C154945302 @default.
- W2950792054 hasConcept C163716315 @default.
- W2950792054 hasConcept C164752517 @default.
- W2950792054 hasConcept C2778049539 @default.
- W2950792054 hasConcept C33923547 @default.
- W2950792054 hasConcept C41008148 @default.
- W2950792054 hasConcept C49937458 @default.
- W2950792054 hasConcept C61326573 @default.
- W2950792054 hasConcept C62520636 @default.
- W2950792054 hasConcept C74193536 @default.
- W2950792054 hasConcept C81692654 @default.
- W2950792054 hasConceptScore W2950792054C107673813 @default.
- W2950792054 hasConceptScore W2950792054C11413529 @default.
- W2950792054 hasConceptScore W2950792054C114614502 @default.
- W2950792054 hasConceptScore W2950792054C119857082 @default.
- W2950792054 hasConceptScore W2950792054C121332964 @default.
- W2950792054 hasConceptScore W2950792054C126255220 @default.
- W2950792054 hasConceptScore W2950792054C131675550 @default.
- W2950792054 hasConceptScore W2950792054C137836250 @default.
- W2950792054 hasConceptScore W2950792054C154945302 @default.
- W2950792054 hasConceptScore W2950792054C163716315 @default.