Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950793881> ?p ?o ?g. }
- W2950793881 endingPage "118453" @default.
- W2950793881 startingPage "118453" @default.
- W2950793881 abstract "Cell-penetrating peptides (CPPs) are often used as transporter systems to deliver various therapeutic agents into the cell. We developed a novel machine learning application which can quantitatively screen the insertion/interaction potential of various CPPs into three model phospholipid monolayers. An artificial neural network (ANN) was designed, trained, and ultimately tested on an external dataset using Langmuir experimental data for 13 CPPs (hydrophilic and amphiphilic) together with various features related to the insertion/interaction efficiency of CPPs. The trained ANN provided accurate predictions of the maximum change in surface pressure of CPPs when injected below three membrane models at pH 7.4. The accuracy of predictions was high for the dataset which was used to construct the model (r2 = 0.986) as well as for the external “prospective” dataset (r2 = 0.969). In conclusion, this study demonstrates the promising potential of ANNs for screening the insertion potential of CPPs into membrane models for efficient intracellular delivery of therapeutic agents." @default.
- W2950793881 created "2019-06-27" @default.
- W2950793881 creator A5009437179 @default.
- W2950793881 creator A5014649653 @default.
- W2950793881 creator A5015292679 @default.
- W2950793881 creator A5082845942 @default.
- W2950793881 date "2019-08-01" @default.
- W2950793881 modified "2023-10-17" @default.
- W2950793881 title "Novel machine learning application for prediction of membrane insertion potential of cell-penetrating peptides" @default.
- W2950793881 cites W1498436455 @default.
- W2950793881 cites W1515068677 @default.
- W2950793881 cites W1965265482 @default.
- W2950793881 cites W1965607051 @default.
- W2950793881 cites W1969552665 @default.
- W2950793881 cites W1969990769 @default.
- W2950793881 cites W1973430331 @default.
- W2950793881 cites W1976223354 @default.
- W2950793881 cites W1976532926 @default.
- W2950793881 cites W1983219382 @default.
- W2950793881 cites W1995505267 @default.
- W2950793881 cites W2001493784 @default.
- W2950793881 cites W2005004006 @default.
- W2950793881 cites W2008832260 @default.
- W2950793881 cites W2029532899 @default.
- W2950793881 cites W2035852872 @default.
- W2950793881 cites W2041244083 @default.
- W2950793881 cites W2045583604 @default.
- W2950793881 cites W2059751045 @default.
- W2950793881 cites W2062848325 @default.
- W2950793881 cites W2064287955 @default.
- W2950793881 cites W2069806311 @default.
- W2950793881 cites W2073016298 @default.
- W2950793881 cites W2076859770 @default.
- W2950793881 cites W2078782169 @default.
- W2950793881 cites W2079335891 @default.
- W2950793881 cites W2093454826 @default.
- W2950793881 cites W2096023347 @default.
- W2950793881 cites W2099431353 @default.
- W2950793881 cites W2101432474 @default.
- W2950793881 cites W2104428288 @default.
- W2950793881 cites W2119094028 @default.
- W2950793881 cites W2141241945 @default.
- W2950793881 cites W2151329903 @default.
- W2950793881 cites W2155482026 @default.
- W2950793881 cites W2281752023 @default.
- W2950793881 cites W2322845469 @default.
- W2950793881 cites W2326124486 @default.
- W2950793881 cites W2334538531 @default.
- W2950793881 cites W2588262749 @default.
- W2950793881 cites W2737811002 @default.
- W2950793881 cites W2768007119 @default.
- W2950793881 cites W2796024961 @default.
- W2950793881 cites W2807896518 @default.
- W2950793881 cites W4239028853 @default.
- W2950793881 cites W4245676270 @default.
- W2950793881 doi "https://doi.org/10.1016/j.ijpharm.2019.118453" @default.
- W2950793881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31233847" @default.
- W2950793881 hasPublicationYear "2019" @default.
- W2950793881 type Work @default.
- W2950793881 sameAs 2950793881 @default.
- W2950793881 citedByCount "14" @default.
- W2950793881 countsByYear W29507938812020 @default.
- W2950793881 countsByYear W29507938812021 @default.
- W2950793881 countsByYear W29507938812022 @default.
- W2950793881 countsByYear W29507938812023 @default.
- W2950793881 crossrefType "journal-article" @default.
- W2950793881 hasAuthorship W2950793881A5009437179 @default.
- W2950793881 hasAuthorship W2950793881A5014649653 @default.
- W2950793881 hasAuthorship W2950793881A5015292679 @default.
- W2950793881 hasAuthorship W2950793881A5082845942 @default.
- W2950793881 hasConcept C12554922 @default.
- W2950793881 hasConcept C1491633281 @default.
- W2950793881 hasConcept C154945302 @default.
- W2950793881 hasConcept C15920480 @default.
- W2950793881 hasConcept C178790620 @default.
- W2950793881 hasConcept C185592680 @default.
- W2950793881 hasConcept C186060115 @default.
- W2950793881 hasConcept C2778106830 @default.
- W2950793881 hasConcept C2778918659 @default.
- W2950793881 hasConcept C41008148 @default.
- W2950793881 hasConcept C41625074 @default.
- W2950793881 hasConcept C50644808 @default.
- W2950793881 hasConcept C521977710 @default.
- W2950793881 hasConcept C55493867 @default.
- W2950793881 hasConcept C67407626 @default.
- W2950793881 hasConcept C86803240 @default.
- W2950793881 hasConceptScore W2950793881C12554922 @default.
- W2950793881 hasConceptScore W2950793881C1491633281 @default.
- W2950793881 hasConceptScore W2950793881C154945302 @default.
- W2950793881 hasConceptScore W2950793881C15920480 @default.
- W2950793881 hasConceptScore W2950793881C178790620 @default.
- W2950793881 hasConceptScore W2950793881C185592680 @default.
- W2950793881 hasConceptScore W2950793881C186060115 @default.
- W2950793881 hasConceptScore W2950793881C2778106830 @default.
- W2950793881 hasConceptScore W2950793881C2778918659 @default.
- W2950793881 hasConceptScore W2950793881C41008148 @default.
- W2950793881 hasConceptScore W2950793881C41625074 @default.
- W2950793881 hasConceptScore W2950793881C50644808 @default.