Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950796323> ?p ?o ?g. }
- W2950796323 abstract "In increasingly many settings, data sets consist of multiple samples from a population of networks, with vertices aligned across these networks. For example, brain connectivity networks in neuroscience consist of measures of interaction between brain regions that have been aligned to a common template. We consider the setting where the observed networks have a shared expectation, but may differ in the noise structure on their edges. Our approach exploits the shared mean structure to denoise edge-level measurements of the observed networks and estimate the underlying population-level parameters. We also explore the extent to which edge-level errors influence estimation and downstream inference. We establish a finite-sample concentration inequality for the low-rank eigenvalue truncation of a random weighted adjacency matrix that may be of independent interest. The proposed approach is illustrated on synthetic networks and on data from an fMRI study of schizophrenia." @default.
- W2950796323 created "2019-06-27" @default.
- W2950796323 creator A5022402974 @default.
- W2950796323 creator A5026493959 @default.
- W2950796323 creator A5033332525 @default.
- W2950796323 date "2019-06-13" @default.
- W2950796323 modified "2023-09-27" @default.
- W2950796323 title "Recovering low-rank structure from multiple networks with unknown edge distributions." @default.
- W2950796323 cites W1511694993 @default.
- W2950796323 cites W1905519752 @default.
- W2950796323 cites W1967087957 @default.
- W2950796323 cites W1967479046 @default.
- W2950796323 cites W1987349051 @default.
- W2950796323 cites W2001009317 @default.
- W2950796323 cites W2046033161 @default.
- W2950796323 cites W2059861509 @default.
- W2950796323 cites W2060705109 @default.
- W2950796323 cites W2088911135 @default.
- W2950796323 cites W2089572795 @default.
- W2950796323 cites W2102907934 @default.
- W2950796323 cites W2113573459 @default.
- W2950796323 cites W2115687188 @default.
- W2950796323 cites W2119735077 @default.
- W2950796323 cites W2129496126 @default.
- W2950796323 cites W2151466840 @default.
- W2950796323 cites W2165793012 @default.
- W2950796323 cites W2222512263 @default.
- W2950796323 cites W2597348720 @default.
- W2950796323 cites W2605316024 @default.
- W2950796323 cites W2620354687 @default.
- W2950796323 cites W2734657936 @default.
- W2950796323 cites W2747936636 @default.
- W2950796323 cites W2803242612 @default.
- W2950796323 cites W2808617871 @default.
- W2950796323 cites W2884607871 @default.
- W2950796323 cites W2943513050 @default.
- W2950796323 cites W2947000318 @default.
- W2950796323 cites W2950293899 @default.
- W2950796323 cites W2955557485 @default.
- W2950796323 cites W2956451617 @default.
- W2950796323 cites W2962967150 @default.
- W2950796323 cites W2963512140 @default.
- W2950796323 cites W2963582232 @default.
- W2950796323 cites W2963784195 @default.
- W2950796323 cites W2964179623 @default.
- W2950796323 cites W2964214140 @default.
- W2950796323 cites W2966291568 @default.
- W2950796323 cites W2996986912 @default.
- W2950796323 cites W3005266068 @default.
- W2950796323 cites W3100558473 @default.
- W2950796323 cites W3101685104 @default.
- W2950796323 cites W3104227803 @default.
- W2950796323 cites W3109913895 @default.
- W2950796323 cites W3125371518 @default.
- W2950796323 cites W568673721 @default.
- W2950796323 cites W585133165 @default.
- W2950796323 hasPublicationYear "2019" @default.
- W2950796323 type Work @default.
- W2950796323 sameAs 2950796323 @default.
- W2950796323 citedByCount "3" @default.
- W2950796323 countsByYear W29507963232019 @default.
- W2950796323 countsByYear W29507963232020 @default.
- W2950796323 countsByYear W29507963232021 @default.
- W2950796323 crossrefType "posted-content" @default.
- W2950796323 hasAuthorship W2950796323A5022402974 @default.
- W2950796323 hasAuthorship W2950796323A5026493959 @default.
- W2950796323 hasAuthorship W2950796323A5033332525 @default.
- W2950796323 hasConcept C106195933 @default.
- W2950796323 hasConcept C11413529 @default.
- W2950796323 hasConcept C114614502 @default.
- W2950796323 hasConcept C115961682 @default.
- W2950796323 hasConcept C119857082 @default.
- W2950796323 hasConcept C121332964 @default.
- W2950796323 hasConcept C124101348 @default.
- W2950796323 hasConcept C132525143 @default.
- W2950796323 hasConcept C144024400 @default.
- W2950796323 hasConcept C149923435 @default.
- W2950796323 hasConcept C153180895 @default.
- W2950796323 hasConcept C154945302 @default.
- W2950796323 hasConcept C162307627 @default.
- W2950796323 hasConcept C164226766 @default.
- W2950796323 hasConcept C180356752 @default.
- W2950796323 hasConcept C198531522 @default.
- W2950796323 hasConcept C2776214188 @default.
- W2950796323 hasConcept C2908647359 @default.
- W2950796323 hasConcept C33923547 @default.
- W2950796323 hasConcept C41008148 @default.
- W2950796323 hasConcept C80444323 @default.
- W2950796323 hasConcept C97355855 @default.
- W2950796323 hasConcept C99498987 @default.
- W2950796323 hasConceptScore W2950796323C106195933 @default.
- W2950796323 hasConceptScore W2950796323C11413529 @default.
- W2950796323 hasConceptScore W2950796323C114614502 @default.
- W2950796323 hasConceptScore W2950796323C115961682 @default.
- W2950796323 hasConceptScore W2950796323C119857082 @default.
- W2950796323 hasConceptScore W2950796323C121332964 @default.
- W2950796323 hasConceptScore W2950796323C124101348 @default.
- W2950796323 hasConceptScore W2950796323C132525143 @default.
- W2950796323 hasConceptScore W2950796323C144024400 @default.
- W2950796323 hasConceptScore W2950796323C149923435 @default.