Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950808766> ?p ?o ?g. }
- W2950808766 abstract "Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies." @default.
- W2950808766 created "2019-06-27" @default.
- W2950808766 creator A5002556086 @default.
- W2950808766 creator A5014272851 @default.
- W2950808766 creator A5038669899 @default.
- W2950808766 creator A5049435924 @default.
- W2950808766 creator A5085402781 @default.
- W2950808766 date "2019-06-20" @default.
- W2950808766 modified "2023-09-25" @default.
- W2950808766 title "Finding Needles in a Moving Haystack: Prioritizing Alerts with Adversarial Reinforcement Learning" @default.
- W2950808766 cites W1513468570 @default.
- W2950808766 cites W1519783625 @default.
- W2950808766 cites W1533861849 @default.
- W2950808766 cites W1542941925 @default.
- W2950808766 cites W1636310606 @default.
- W2950808766 cites W1663973292 @default.
- W2950808766 cites W1677182931 @default.
- W2950808766 cites W1757796397 @default.
- W2950808766 cites W1772700132 @default.
- W2950808766 cites W1864236274 @default.
- W2950808766 cites W1985987493 @default.
- W2950808766 cites W2041367235 @default.
- W2950808766 cites W2067064328 @default.
- W2950808766 cites W2113351146 @default.
- W2950808766 cites W2114133631 @default.
- W2950808766 cites W2120846115 @default.
- W2950808766 cites W2145339207 @default.
- W2950808766 cites W2155926039 @default.
- W2950808766 cites W2155968351 @default.
- W2950808766 cites W2160841769 @default.
- W2950808766 cites W2173248099 @default.
- W2950808766 cites W2173564293 @default.
- W2950808766 cites W2201581102 @default.
- W2950808766 cites W2202067636 @default.
- W2950808766 cites W2342408547 @default.
- W2950808766 cites W2402144811 @default.
- W2950808766 cites W2724169821 @default.
- W2950808766 cites W2739823785 @default.
- W2950808766 cites W2752373508 @default.
- W2950808766 cites W2784812879 @default.
- W2950808766 cites W2789828921 @default.
- W2950808766 cites W2886189420 @default.
- W2950808766 cites W2913300125 @default.
- W2950808766 cites W2963423916 @default.
- W2950808766 cites W2963619318 @default.
- W2950808766 cites W2963937357 @default.
- W2950808766 cites W2964043796 @default.
- W2950808766 cites W2964291307 @default.
- W2950808766 cites W3011120880 @default.
- W2950808766 cites W351141490 @default.
- W2950808766 doi "https://doi.org/10.48550/arxiv.1906.08805" @default.
- W2950808766 hasPublicationYear "2019" @default.
- W2950808766 type Work @default.
- W2950808766 sameAs 2950808766 @default.
- W2950808766 citedByCount "1" @default.
- W2950808766 countsByYear W29508087662019 @default.
- W2950808766 crossrefType "posted-content" @default.
- W2950808766 hasAuthorship W2950808766A5002556086 @default.
- W2950808766 hasAuthorship W2950808766A5014272851 @default.
- W2950808766 hasAuthorship W2950808766A5038669899 @default.
- W2950808766 hasAuthorship W2950808766A5049435924 @default.
- W2950808766 hasAuthorship W2950808766A5085402781 @default.
- W2950808766 hasBestOaLocation W29508087661 @default.
- W2950808766 hasConcept C115903868 @default.
- W2950808766 hasConcept C119857082 @default.
- W2950808766 hasConcept C13424479 @default.
- W2950808766 hasConcept C14036430 @default.
- W2950808766 hasConcept C154945302 @default.
- W2950808766 hasConcept C173801870 @default.
- W2950808766 hasConcept C2778403875 @default.
- W2950808766 hasConcept C35525427 @default.
- W2950808766 hasConcept C37736160 @default.
- W2950808766 hasConcept C38652104 @default.
- W2950808766 hasConcept C41008148 @default.
- W2950808766 hasConcept C41065033 @default.
- W2950808766 hasConcept C55166926 @default.
- W2950808766 hasConcept C78458016 @default.
- W2950808766 hasConcept C86803240 @default.
- W2950808766 hasConcept C97541855 @default.
- W2950808766 hasConceptScore W2950808766C115903868 @default.
- W2950808766 hasConceptScore W2950808766C119857082 @default.
- W2950808766 hasConceptScore W2950808766C13424479 @default.
- W2950808766 hasConceptScore W2950808766C14036430 @default.
- W2950808766 hasConceptScore W2950808766C154945302 @default.
- W2950808766 hasConceptScore W2950808766C173801870 @default.
- W2950808766 hasConceptScore W2950808766C2778403875 @default.
- W2950808766 hasConceptScore W2950808766C35525427 @default.
- W2950808766 hasConceptScore W2950808766C37736160 @default.
- W2950808766 hasConceptScore W2950808766C38652104 @default.
- W2950808766 hasConceptScore W2950808766C41008148 @default.
- W2950808766 hasConceptScore W2950808766C41065033 @default.
- W2950808766 hasConceptScore W2950808766C55166926 @default.
- W2950808766 hasConceptScore W2950808766C78458016 @default.
- W2950808766 hasConceptScore W2950808766C86803240 @default.
- W2950808766 hasConceptScore W2950808766C97541855 @default.
- W2950808766 hasLocation W29508087661 @default.
- W2950808766 hasOpenAccess W2950808766 @default.
- W2950808766 hasPrimaryLocation W29508087661 @default.
- W2950808766 hasRelatedWork W2950808766 @default.
- W2950808766 hasRelatedWork W2953920146 @default.