Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950819623> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2950819623 endingPage "104009" @default.
- W2950819623 startingPage "104009" @default.
- W2950819623 abstract "Abstract The accuracy of component detection of turbid media can be difficult to improve due to the mutual influence of scattering and absorption in light attenuation. In this study, a heteromorphic sample pool was introduced containing turbid media with India Ink and Intralipid-20% fat emulsion, which increases the scattering information of the non-circumferential symmetric hyperspectral image of the turbid media. A gray level co-occurrence matrix (GLCM) was used to extract textural features from the hyperspectral images. Subsequently, the textural features were correlated with the concentrations of Intralipid-20% by means of partial least squares regression, and it was compared with the frequently used analysis of two-dimensional exit light intensity. Experimental results show that textural feature modeling is superior to conventional light intensity modeling with a correlation coefficient of prediction (Rp) = 0.9831 and a root-mean-square error of prediction (RMSEP) = 0.0631% in the prediction set. This study provides a potentially viable method for detecting the components of turbid media quantitatively in analytical chemistry." @default.
- W2950819623 created "2019-06-27" @default.
- W2950819623 creator A5000356984 @default.
- W2950819623 creator A5000494052 @default.
- W2950819623 creator A5009691103 @default.
- W2950819623 creator A5015729655 @default.
- W2950819623 creator A5017894772 @default.
- W2950819623 creator A5029714740 @default.
- W2950819623 date "2019-09-01" @default.
- W2950819623 modified "2023-10-17" @default.
- W2950819623 title "Quantitative detection of turbid media components using textural features extracted from hyperspectral images" @default.
- W2950819623 cites W1846044854 @default.
- W2950819623 cites W1979761460 @default.
- W2950819623 cites W2010797000 @default.
- W2950819623 cites W2055702453 @default.
- W2950819623 cites W2106114866 @default.
- W2950819623 cites W2127047020 @default.
- W2950819623 cites W2201726142 @default.
- W2950819623 cites W2228221367 @default.
- W2950819623 cites W2340760070 @default.
- W2950819623 cites W2747687481 @default.
- W2950819623 cites W2770027378 @default.
- W2950819623 cites W2770928509 @default.
- W2950819623 cites W2884279016 @default.
- W2950819623 cites W2909344057 @default.
- W2950819623 cites W2909787778 @default.
- W2950819623 cites W2945743487 @default.
- W2950819623 doi "https://doi.org/10.1016/j.microc.2019.104009" @default.
- W2950819623 hasPublicationYear "2019" @default.
- W2950819623 type Work @default.
- W2950819623 sameAs 2950819623 @default.
- W2950819623 citedByCount "8" @default.
- W2950819623 countsByYear W29508196232019 @default.
- W2950819623 countsByYear W29508196232020 @default.
- W2950819623 countsByYear W29508196232021 @default.
- W2950819623 countsByYear W29508196232022 @default.
- W2950819623 countsByYear W29508196232023 @default.
- W2950819623 crossrefType "journal-article" @default.
- W2950819623 hasAuthorship W2950819623A5000356984 @default.
- W2950819623 hasAuthorship W2950819623A5000494052 @default.
- W2950819623 hasAuthorship W2950819623A5009691103 @default.
- W2950819623 hasAuthorship W2950819623A5015729655 @default.
- W2950819623 hasAuthorship W2950819623A5017894772 @default.
- W2950819623 hasAuthorship W2950819623A5029714740 @default.
- W2950819623 hasConcept C127313418 @default.
- W2950819623 hasConcept C153180895 @default.
- W2950819623 hasConcept C154945302 @default.
- W2950819623 hasConcept C159078339 @default.
- W2950819623 hasConcept C41008148 @default.
- W2950819623 hasConcept C62649853 @default.
- W2950819623 hasConceptScore W2950819623C127313418 @default.
- W2950819623 hasConceptScore W2950819623C153180895 @default.
- W2950819623 hasConceptScore W2950819623C154945302 @default.
- W2950819623 hasConceptScore W2950819623C159078339 @default.
- W2950819623 hasConceptScore W2950819623C41008148 @default.
- W2950819623 hasConceptScore W2950819623C62649853 @default.
- W2950819623 hasFunder F4320321001 @default.
- W2950819623 hasFunder F4320335774 @default.
- W2950819623 hasLocation W29508196231 @default.
- W2950819623 hasOpenAccess W2950819623 @default.
- W2950819623 hasPrimaryLocation W29508196231 @default.
- W2950819623 hasRelatedWork W1869808405 @default.
- W2950819623 hasRelatedWork W2018257962 @default.
- W2950819623 hasRelatedWork W2028628118 @default.
- W2950819623 hasRelatedWork W2031007444 @default.
- W2950819623 hasRelatedWork W2565015337 @default.
- W2950819623 hasRelatedWork W2775464024 @default.
- W2950819623 hasRelatedWork W2783789044 @default.
- W2950819623 hasRelatedWork W2891352623 @default.
- W2950819623 hasRelatedWork W3211035526 @default.
- W2950819623 hasRelatedWork W4291701050 @default.
- W2950819623 hasVolume "149" @default.
- W2950819623 isParatext "false" @default.
- W2950819623 isRetracted "false" @default.
- W2950819623 magId "2950819623" @default.
- W2950819623 workType "article" @default.