Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950821630> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2950821630 abstract "Variational autoencoders are a powerful framework for unsupervised learning. However, previous work has been restricted to shallow models with one or two layers of fully factorized stochastic latent variables, limiting the flexibility of the latent representation. We propose three advances in training algorithms of variational autoencoders, for the first time allowing to train deep models of up to five stochastic layers, (1) using a structure similar to the Ladder network as the inference model, (2) warm-up period to support stochastic units staying active in early training, and (3) use of batch normalization. Using these improvements we show state-of-the-art log-likelihood results for generative modeling on several benchmark datasets." @default.
- W2950821630 created "2019-06-27" @default.
- W2950821630 creator A5007556794 @default.
- W2950821630 creator A5008894339 @default.
- W2950821630 creator A5014389163 @default.
- W2950821630 creator A5053070321 @default.
- W2950821630 creator A5082357240 @default.
- W2950821630 date "2016-02-06" @default.
- W2950821630 modified "2023-09-27" @default.
- W2950821630 title "How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks" @default.
- W2950821630 hasPublicationYear "2016" @default.
- W2950821630 type Work @default.
- W2950821630 sameAs 2950821630 @default.
- W2950821630 citedByCount "10" @default.
- W2950821630 countsByYear W29508216302016 @default.
- W2950821630 countsByYear W29508216302017 @default.
- W2950821630 countsByYear W29508216302019 @default.
- W2950821630 countsByYear W29508216302020 @default.
- W2950821630 crossrefType "posted-content" @default.
- W2950821630 hasAuthorship W2950821630A5007556794 @default.
- W2950821630 hasAuthorship W2950821630A5008894339 @default.
- W2950821630 hasAuthorship W2950821630A5014389163 @default.
- W2950821630 hasAuthorship W2950821630A5053070321 @default.
- W2950821630 hasAuthorship W2950821630A5082357240 @default.
- W2950821630 hasConcept C107673813 @default.
- W2950821630 hasConcept C11413529 @default.
- W2950821630 hasConcept C119857082 @default.
- W2950821630 hasConcept C13280743 @default.
- W2950821630 hasConcept C136886441 @default.
- W2950821630 hasConcept C144024400 @default.
- W2950821630 hasConcept C154945302 @default.
- W2950821630 hasConcept C160234255 @default.
- W2950821630 hasConcept C167966045 @default.
- W2950821630 hasConcept C17744445 @default.
- W2950821630 hasConcept C185798385 @default.
- W2950821630 hasConcept C19165224 @default.
- W2950821630 hasConcept C199539241 @default.
- W2950821630 hasConcept C205649164 @default.
- W2950821630 hasConcept C2776214188 @default.
- W2950821630 hasConcept C2776359362 @default.
- W2950821630 hasConcept C39890363 @default.
- W2950821630 hasConcept C41008148 @default.
- W2950821630 hasConcept C49937458 @default.
- W2950821630 hasConcept C51167844 @default.
- W2950821630 hasConcept C8038995 @default.
- W2950821630 hasConcept C94625758 @default.
- W2950821630 hasConceptScore W2950821630C107673813 @default.
- W2950821630 hasConceptScore W2950821630C11413529 @default.
- W2950821630 hasConceptScore W2950821630C119857082 @default.
- W2950821630 hasConceptScore W2950821630C13280743 @default.
- W2950821630 hasConceptScore W2950821630C136886441 @default.
- W2950821630 hasConceptScore W2950821630C144024400 @default.
- W2950821630 hasConceptScore W2950821630C154945302 @default.
- W2950821630 hasConceptScore W2950821630C160234255 @default.
- W2950821630 hasConceptScore W2950821630C167966045 @default.
- W2950821630 hasConceptScore W2950821630C17744445 @default.
- W2950821630 hasConceptScore W2950821630C185798385 @default.
- W2950821630 hasConceptScore W2950821630C19165224 @default.
- W2950821630 hasConceptScore W2950821630C199539241 @default.
- W2950821630 hasConceptScore W2950821630C205649164 @default.
- W2950821630 hasConceptScore W2950821630C2776214188 @default.
- W2950821630 hasConceptScore W2950821630C2776359362 @default.
- W2950821630 hasConceptScore W2950821630C39890363 @default.
- W2950821630 hasConceptScore W2950821630C41008148 @default.
- W2950821630 hasConceptScore W2950821630C49937458 @default.
- W2950821630 hasConceptScore W2950821630C51167844 @default.
- W2950821630 hasConceptScore W2950821630C8038995 @default.
- W2950821630 hasConceptScore W2950821630C94625758 @default.
- W2950821630 hasLocation W29508216301 @default.
- W2950821630 hasOpenAccess W2950821630 @default.
- W2950821630 hasPrimaryLocation W29508216301 @default.
- W2950821630 hasRelatedWork W1909320841 @default.
- W2950821630 hasRelatedWork W2099471712 @default.
- W2950821630 hasRelatedWork W2269892441 @default.
- W2950821630 hasRelatedWork W2396178844 @default.
- W2950821630 hasRelatedWork W2549019841 @default.
- W2950821630 hasRelatedWork W2604977777 @default.
- W2950821630 hasRelatedWork W2753738274 @default.
- W2950821630 hasRelatedWork W2783606427 @default.
- W2950821630 hasRelatedWork W2797945069 @default.
- W2950821630 hasRelatedWork W2886659043 @default.
- W2950821630 hasRelatedWork W2951004968 @default.
- W2950821630 hasRelatedWork W2963532523 @default.
- W2950821630 hasRelatedWork W2963925733 @default.
- W2950821630 hasRelatedWork W2964168257 @default.
- W2950821630 hasRelatedWork W2973021803 @default.
- W2950821630 hasRelatedWork W3096628760 @default.
- W2950821630 hasRelatedWork W3138043709 @default.
- W2950821630 hasRelatedWork W3153273997 @default.
- W2950821630 hasRelatedWork W3161942977 @default.
- W2950821630 hasRelatedWork W3167650593 @default.
- W2950821630 isParatext "false" @default.
- W2950821630 isRetracted "false" @default.
- W2950821630 magId "2950821630" @default.
- W2950821630 workType "article" @default.