Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950852942> ?p ?o ?g. }
- W2950852942 abstract "Understanding the dynamics of an infectious disease, such as malaria, helps us to reduce the number of deaths and to achieve better control of its spread. Mathematical models can help to predict the outcomes of new ideas for containing disease spread. This thesis constitutes an extension of previous attempts to understand, via mathematical modelling, the dynamics of mosquito populations and malaria. We propose 5 distinct non-linear age dependent mathematical models. The first model uses, as a starting point, an approach to modelling nonlinear effects in agestructured models due to Gurtin and MacCamy [31]. However, the model we derive (which takes the form of a system of delay differential equations) is much more complex. We demonstrate analytical results on linear stability of both zero and positive equilibria in various cases. We then examine a more complex equation which incorporates competition among larval mosquitoes. Furthermore, results on boundedness of solutions and on the existence of positive equilibria are proved. Numerical simulations show that for specific values of several parameters three equilibrium points can be achieved as well as that the equilibria decrease as we increase the larval competition coefficient. In the second mathematical model, we examine a neutral delay differential equation. This specific type of equation is consequent upon the assumption that an adult mosquito lays a batch of eggs immediately upon maturation, followed possibly by further batches (not necessarily containing the same number of eggs) on reaching the particular ages τi + nτ, n = 1,2,..., with no egg laying in between these ages. This models the idea that egg laying follows blood meals. A particular case is the case when adult mosquito lays all of its eggs immediately on maturation, and none at all later in life. In that case the non-trivial equilibrium is locally stable but the roots of the characteristic equation are not bounded away from the imaginary axis. More generally, with adults laying eggs at ages τi +nτ, we may show under some conditions that the unique positive equilibria is linearly stable. Results on the existence of positive equilibria and boundedness of solutions are proved in this general case. Moving to the third mathematical model of the thesis, in Chapter 4, we examine two strains for the mosquito population, the vulnerable and the resistant strain. This model is based on the assumption that mosquitoes may become resistant to insecticides. One particular idea that we examine is the possibility that the parameter values such as the per-capita death rate, maturation time and the kernel g(a) which describes the adult mosquito egg laying activity are different in the two strains. We present analytical results on the global stability of the zero equilibrium and the linear stability of the boundary equilibrium. Numerical simulations show that for several parameter values either of the two strains can win the competition and drive the other one to extinction. In Chapter 5, the fourth mathematical model that we propose has similarities to the model of Chapter 4 but also allows the possibility of an adult vulnerable mosquito to die due to the insecticide. We propose a model for the case of an insecticide that attacks a mosquito with increasing potency as it ages, eventually giving us a system of four-integral equations. We compare two kinds of insecticides, late-life acting (LLA) insecticides and conventional insecticides, and try to find under what circumstances the LLA insecticide will slow down the evolution of insecticide resistance. The final part of the thesis examines the interaction between the host (human) and the vector (mosquito). Our fifth model provides analytical and numerical results for an eight-dimensional system of equations, consisting of two differential equations and six integral equations. For this model we find a set of conditions sufficient for the eradication of malaria." @default.
- W2950852942 created "2019-06-27" @default.
- W2950852942 creator A5050560194 @default.
- W2950852942 date "2019-03-29" @default.
- W2950852942 modified "2023-09-27" @default.
- W2950852942 title "Evolution of resistance in ecological and epidemiological contexts." @default.
- W2950852942 cites W1484822889 @default.
- W2950852942 cites W1511572658 @default.
- W2950852942 cites W1593462482 @default.
- W2950852942 cites W1606697907 @default.
- W2950852942 cites W1612101743 @default.
- W2950852942 cites W1807173209 @default.
- W2950852942 cites W1851248039 @default.
- W2950852942 cites W1965307823 @default.
- W2950852942 cites W1975146217 @default.
- W2950852942 cites W1984616299 @default.
- W2950852942 cites W1989318293 @default.
- W2950852942 cites W1994988165 @default.
- W2950852942 cites W1996620036 @default.
- W2950852942 cites W2008824015 @default.
- W2950852942 cites W2021544975 @default.
- W2950852942 cites W2029226117 @default.
- W2950852942 cites W2039929923 @default.
- W2950852942 cites W2048729527 @default.
- W2950852942 cites W2051157460 @default.
- W2950852942 cites W2058006415 @default.
- W2950852942 cites W2059215388 @default.
- W2950852942 cites W2066881397 @default.
- W2950852942 cites W2068579476 @default.
- W2950852942 cites W2079709719 @default.
- W2950852942 cites W2088403795 @default.
- W2950852942 cites W2089781823 @default.
- W2950852942 cites W2094077008 @default.
- W2950852942 cites W2101278855 @default.
- W2950852942 cites W2101904700 @default.
- W2950852942 cites W2106675599 @default.
- W2950852942 cites W2110243445 @default.
- W2950852942 cites W2116721397 @default.
- W2950852942 cites W2117176242 @default.
- W2950852942 cites W2121675649 @default.
- W2950852942 cites W2124906654 @default.
- W2950852942 cites W2126794664 @default.
- W2950852942 cites W2130939378 @default.
- W2950852942 cites W2132310478 @default.
- W2950852942 cites W2133724824 @default.
- W2950852942 cites W2133993600 @default.
- W2950852942 cites W2135502159 @default.
- W2950852942 cites W2135802236 @default.
- W2950852942 cites W2137815887 @default.
- W2950852942 cites W2161728228 @default.
- W2950852942 cites W2165151302 @default.
- W2950852942 cites W2166722408 @default.
- W2950852942 cites W2167473924 @default.
- W2950852942 cites W2169006847 @default.
- W2950852942 cites W2230590553 @default.
- W2950852942 cites W2312314980 @default.
- W2950852942 cites W2419066922 @default.
- W2950852942 cites W2615811724 @default.
- W2950852942 cites W2741294968 @default.
- W2950852942 cites W2783699776 @default.
- W2950852942 cites W2798922842 @default.
- W2950852942 cites W658624297 @default.
- W2950852942 cites W2131142445 @default.
- W2950852942 doi "https://doi.org/10.15126/thesis.00850744" @default.
- W2950852942 hasPublicationYear "2019" @default.
- W2950852942 type Work @default.
- W2950852942 sameAs 2950852942 @default.
- W2950852942 citedByCount "0" @default.
- W2950852942 crossrefType "dissertation" @default.
- W2950852942 hasAuthorship W2950852942A5050560194 @default.
- W2950852942 hasConcept C105795698 @default.
- W2950852942 hasConcept C112972136 @default.
- W2950852942 hasConcept C119857082 @default.
- W2950852942 hasConcept C121332964 @default.
- W2950852942 hasConcept C134306372 @default.
- W2950852942 hasConcept C158622935 @default.
- W2950852942 hasConcept C18903297 @default.
- W2950852942 hasConcept C28826006 @default.
- W2950852942 hasConcept C33923547 @default.
- W2950852942 hasConcept C41008148 @default.
- W2950852942 hasConcept C62520636 @default.
- W2950852942 hasConcept C76969082 @default.
- W2950852942 hasConcept C78045399 @default.
- W2950852942 hasConcept C86803240 @default.
- W2950852942 hasConcept C91306197 @default.
- W2950852942 hasConcept C94766913 @default.
- W2950852942 hasConceptScore W2950852942C105795698 @default.
- W2950852942 hasConceptScore W2950852942C112972136 @default.
- W2950852942 hasConceptScore W2950852942C119857082 @default.
- W2950852942 hasConceptScore W2950852942C121332964 @default.
- W2950852942 hasConceptScore W2950852942C134306372 @default.
- W2950852942 hasConceptScore W2950852942C158622935 @default.
- W2950852942 hasConceptScore W2950852942C18903297 @default.
- W2950852942 hasConceptScore W2950852942C28826006 @default.
- W2950852942 hasConceptScore W2950852942C33923547 @default.
- W2950852942 hasConceptScore W2950852942C41008148 @default.
- W2950852942 hasConceptScore W2950852942C62520636 @default.
- W2950852942 hasConceptScore W2950852942C76969082 @default.
- W2950852942 hasConceptScore W2950852942C78045399 @default.
- W2950852942 hasConceptScore W2950852942C86803240 @default.