Matches in SemOpenAlex for { <https://semopenalex.org/work/W29508726> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W29508726 endingPage "364" @default.
- W29508726 startingPage "355" @default.
- W29508726 abstract "In this paper we propose a particle swarm based back propagation neural network model which uses an optimized target to maximize the classification accuracy of the classifier. By using Particle swarm optimization technique an optimized target for each class was determined and there after the artificial neural network is used to classify the data using these targets. For this, some of the bench mark classification datasets are used, which are taken from UCI learning repository. An extensive experimental study has been carried out to compare the proposed method and existing method on the same datasets and a comparative analysis is done by taking several parameters like percentage of accuracy, time of response and complexity of the algorithm. During this study we have examined the performance improvement of the proposed PSO and BPN combined approach over the conventional BPN approach to generate classification inferences from the training and testing results." @default.
- W29508726 created "2016-06-24" @default.
- W29508726 creator A5000200909 @default.
- W29508726 creator A5035529348 @default.
- W29508726 creator A5081123737 @default.
- W29508726 date "2014-12-11" @default.
- W29508726 modified "2023-09-27" @default.
- W29508726 title "An ANN Model to Classify Multinomial Datasets with Optimized Target Using Particle Swarm Optimization Technique" @default.
- W29508726 cites W2017838688 @default.
- W29508726 cites W2070131199 @default.
- W29508726 cites W2133218851 @default.
- W29508726 cites W2139637740 @default.
- W29508726 cites W2147885930 @default.
- W29508726 cites W2158352125 @default.
- W29508726 doi "https://doi.org/10.1007/978-81-322-2205-7_34" @default.
- W29508726 hasPublicationYear "2014" @default.
- W29508726 type Work @default.
- W29508726 sameAs 29508726 @default.
- W29508726 citedByCount "0" @default.
- W29508726 crossrefType "book-chapter" @default.
- W29508726 hasAuthorship W29508726A5000200909 @default.
- W29508726 hasAuthorship W29508726A5035529348 @default.
- W29508726 hasAuthorship W29508726A5081123737 @default.
- W29508726 hasConcept C119857082 @default.
- W29508726 hasConcept C124101348 @default.
- W29508726 hasConcept C153180895 @default.
- W29508726 hasConcept C154945302 @default.
- W29508726 hasConcept C41008148 @default.
- W29508726 hasConcept C50644808 @default.
- W29508726 hasConcept C85617194 @default.
- W29508726 hasConcept C95623464 @default.
- W29508726 hasConceptScore W29508726C119857082 @default.
- W29508726 hasConceptScore W29508726C124101348 @default.
- W29508726 hasConceptScore W29508726C153180895 @default.
- W29508726 hasConceptScore W29508726C154945302 @default.
- W29508726 hasConceptScore W29508726C41008148 @default.
- W29508726 hasConceptScore W29508726C50644808 @default.
- W29508726 hasConceptScore W29508726C85617194 @default.
- W29508726 hasConceptScore W29508726C95623464 @default.
- W29508726 hasLocation W295087261 @default.
- W29508726 hasOpenAccess W29508726 @default.
- W29508726 hasPrimaryLocation W295087261 @default.
- W29508726 hasRelatedWork W2167582322 @default.
- W29508726 hasRelatedWork W2556319748 @default.
- W29508726 hasRelatedWork W2563096758 @default.
- W29508726 hasRelatedWork W2742991909 @default.
- W29508726 hasRelatedWork W2961085424 @default.
- W29508726 hasRelatedWork W2972035100 @default.
- W29508726 hasRelatedWork W3200179079 @default.
- W29508726 hasRelatedWork W4306674287 @default.
- W29508726 hasRelatedWork W4386053843 @default.
- W29508726 hasRelatedWork W3158004940 @default.
- W29508726 isParatext "false" @default.
- W29508726 isRetracted "false" @default.
- W29508726 magId "29508726" @default.
- W29508726 workType "book-chapter" @default.