Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950873052> ?p ?o ?g. }
- W2950873052 abstract "We present a method to detect anomalies in a time series of flow interaction patterns. There are many existing methods for anomaly detection in network traffic, such as number of packets. However, there is non established method detecting anomalies in a time series of flow interaction patterns that can be represented as complex network. Firstly, based on proposed multivariate flow similarity method on temporal locality, a complex network model (MFS-TL) is constructed to describe the interactive behaviors of traffic flows. Having analyzed the relationships between MFS-TL characteristics, temporal locality window and multivariate flow similarity critical threshold, an approach for parameter determination is established. Having observed the evolution of MFS-TL characteristics, three non-deterministic correlations are defined for network states (i.e. normal or abnormal). Furthermore, intuitionistic fuzzy set (IFS) is introduced to quantify three non-deterministic correlations, and then a anomaly detection method is put forward for single characteristic sequence. To build an objective IFS, we design a Gaussian distribution-based membership function with a variable hesitation degree. To determine the mapping of IFS's clustering intervals to network states, a distinction index is developed. Then, an IFS ensemble method (IFSE-AD) is proposed to eliminate the impacts of the inconsistent about MFS-TL characteristic to network state and improve detection performance. Finally, we carried out extensive experiments on several network traffic datasets for anomaly detection, and the results demonstrate the superiority of IFSE-AD to state-of-the-art approaches, validating the effectiveness of our method." @default.
- W2950873052 created "2019-06-27" @default.
- W2950873052 creator A5014961410 @default.
- W2950873052 creator A5029336126 @default.
- W2950873052 creator A5040371597 @default.
- W2950873052 creator A5060993475 @default.
- W2950873052 creator A5075577652 @default.
- W2950873052 creator A5087565242 @default.
- W2950873052 date "2018-09-12" @default.
- W2950873052 modified "2023-10-17" @default.
- W2950873052 title "Using Intuitionistic Fuzzy Set for Anomaly Detection of Network Traffic from Flow Interaction" @default.
- W2950873052 cites W1966809779 @default.
- W2950873052 cites W1969921454 @default.
- W2950873052 cites W1981107087 @default.
- W2950873052 cites W1983285030 @default.
- W2950873052 cites W2017527184 @default.
- W2950873052 cites W2021820673 @default.
- W2950873052 cites W2029074979 @default.
- W2950873052 cites W2036753190 @default.
- W2950873052 cites W2047818868 @default.
- W2950873052 cites W2053359564 @default.
- W2950873052 cites W2074403295 @default.
- W2950873052 cites W2077488147 @default.
- W2950873052 cites W2081037298 @default.
- W2950873052 cites W2093859880 @default.
- W2950873052 cites W2097452216 @default.
- W2950873052 cites W2099452399 @default.
- W2950873052 cites W2104837959 @default.
- W2950873052 cites W2111002866 @default.
- W2950873052 cites W2112213600 @default.
- W2950873052 cites W2120797124 @default.
- W2950873052 cites W2122269925 @default.
- W2950873052 cites W2130104690 @default.
- W2950873052 cites W2133433867 @default.
- W2950873052 cites W2147845504 @default.
- W2950873052 cites W2149726907 @default.
- W2950873052 cites W2150755264 @default.
- W2950873052 cites W2151038992 @default.
- W2950873052 cites W2151865696 @default.
- W2950873052 cites W2278186031 @default.
- W2950873052 cites W2521472744 @default.
- W2950873052 cites W2603600199 @default.
- W2950873052 cites W2732962200 @default.
- W2950873052 cites W2755787053 @default.
- W2950873052 cites W2789514799 @default.
- W2950873052 cites W2790864385 @default.
- W2950873052 cites W2802898945 @default.
- W2950873052 cites W2805836324 @default.
- W2950873052 cites W2962877236 @default.
- W2950873052 cites W309312769 @default.
- W2950873052 cites W3146459094 @default.
- W2950873052 doi "https://doi.org/10.48550/arxiv.1810.07796" @default.
- W2950873052 hasPublicationYear "2018" @default.
- W2950873052 type Work @default.
- W2950873052 sameAs 2950873052 @default.
- W2950873052 citedByCount "0" @default.
- W2950873052 crossrefType "posted-content" @default.
- W2950873052 hasAuthorship W2950873052A5014961410 @default.
- W2950873052 hasAuthorship W2950873052A5029336126 @default.
- W2950873052 hasAuthorship W2950873052A5040371597 @default.
- W2950873052 hasAuthorship W2950873052A5060993475 @default.
- W2950873052 hasAuthorship W2950873052A5075577652 @default.
- W2950873052 hasAuthorship W2950873052A5087565242 @default.
- W2950873052 hasBestOaLocation W29508730521 @default.
- W2950873052 hasConcept C103278499 @default.
- W2950873052 hasConcept C115961682 @default.
- W2950873052 hasConcept C119857082 @default.
- W2950873052 hasConcept C121332964 @default.
- W2950873052 hasConcept C124101348 @default.
- W2950873052 hasConcept C12997251 @default.
- W2950873052 hasConcept C143724316 @default.
- W2950873052 hasConcept C151730666 @default.
- W2950873052 hasConcept C153180895 @default.
- W2950873052 hasConcept C154945302 @default.
- W2950873052 hasConcept C161584116 @default.
- W2950873052 hasConcept C163716315 @default.
- W2950873052 hasConcept C177264268 @default.
- W2950873052 hasConcept C199360897 @default.
- W2950873052 hasConcept C26873012 @default.
- W2950873052 hasConcept C41008148 @default.
- W2950873052 hasConcept C58166 @default.
- W2950873052 hasConcept C62520636 @default.
- W2950873052 hasConcept C73555534 @default.
- W2950873052 hasConcept C739882 @default.
- W2950873052 hasConcept C86803240 @default.
- W2950873052 hasConceptScore W2950873052C103278499 @default.
- W2950873052 hasConceptScore W2950873052C115961682 @default.
- W2950873052 hasConceptScore W2950873052C119857082 @default.
- W2950873052 hasConceptScore W2950873052C121332964 @default.
- W2950873052 hasConceptScore W2950873052C124101348 @default.
- W2950873052 hasConceptScore W2950873052C12997251 @default.
- W2950873052 hasConceptScore W2950873052C143724316 @default.
- W2950873052 hasConceptScore W2950873052C151730666 @default.
- W2950873052 hasConceptScore W2950873052C153180895 @default.
- W2950873052 hasConceptScore W2950873052C154945302 @default.
- W2950873052 hasConceptScore W2950873052C161584116 @default.
- W2950873052 hasConceptScore W2950873052C163716315 @default.
- W2950873052 hasConceptScore W2950873052C177264268 @default.
- W2950873052 hasConceptScore W2950873052C199360897 @default.
- W2950873052 hasConceptScore W2950873052C26873012 @default.