Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950880176> ?p ?o ?g. }
- W2950880176 abstract "Approximate message passing (AMP) is an algorithmic framework for solving linear inverse problems from noisy measurements, with exciting applications such as reconstructing images, audio, hyper spectral images, and various other signals, including those acquired in compressive signal acquisiton systems. The growing prevalence of big data systems has increased interest in large-scale problems, which may involve huge measurement matrices that are unsuitable for conventional computing systems. To address the challenge of large-scale processing, multiprocessor (MP) versions of AMP have been developed. We provide an overview of two such MP-AMP variants. In row-MP-AMP, each computing node stores a subset of the rows of the matrix and processes corresponding measurements. In column- MP-AMP, each node stores a subset of columns, and is solely responsible for reconstructing a portion of the signal. We will discuss pros and cons of both approaches, summarize recent research results for each, and explain when each one may be a viable approach. Aspects that are highlighted include some recent results on state evolution for both MP-AMP algorithms, and the use of data compression to reduce communication in the MP network." @default.
- W2950880176 created "2019-06-27" @default.
- W2950880176 creator A5030241627 @default.
- W2950880176 creator A5037316256 @default.
- W2950880176 creator A5068497963 @default.
- W2950880176 date "2017-02-09" @default.
- W2950880176 modified "2023-09-23" @default.
- W2950880176 title "An Overview of Multi-Processor Approximate Message Passing" @default.
- W2950880176 cites W1500149156 @default.
- W2950880176 cites W1510028821 @default.
- W2950880176 cites W1538237237 @default.
- W2950880176 cites W1539800233 @default.
- W2950880176 cites W1688262880 @default.
- W2950880176 cites W1837352444 @default.
- W2950880176 cites W1965875863 @default.
- W2950880176 cites W1968110092 @default.
- W2950880176 cites W1987772002 @default.
- W2950880176 cites W2006602349 @default.
- W2950880176 cites W2026933032 @default.
- W2950880176 cites W2042792015 @default.
- W2950880176 cites W2053745833 @default.
- W2950880176 cites W2062770263 @default.
- W2950880176 cites W2080570118 @default.
- W2950880176 cites W2082029531 @default.
- W2950880176 cites W2099111195 @default.
- W2950880176 cites W2100556411 @default.
- W2950880176 cites W2116394223 @default.
- W2950880176 cites W2118902885 @default.
- W2950880176 cites W2129344187 @default.
- W2950880176 cites W2134383396 @default.
- W2950880176 cites W2138358551 @default.
- W2950880176 cites W2144015943 @default.
- W2950880176 cites W2145096794 @default.
- W2950880176 cites W2148986322 @default.
- W2950880176 cites W2162448125 @default.
- W2950880176 cites W2164031139 @default.
- W2950880176 cites W2166500259 @default.
- W2950880176 cites W2166670884 @default.
- W2950880176 cites W2258502292 @default.
- W2950880176 cites W2281011761 @default.
- W2950880176 cites W2296616510 @default.
- W2950880176 cites W2481342515 @default.
- W2950880176 cites W2530325458 @default.
- W2950880176 cites W2586845858 @default.
- W2950880176 cites W2913399920 @default.
- W2950880176 cites W2950315427 @default.
- W2950880176 cites W2950547923 @default.
- W2950880176 cites W2952289989 @default.
- W2950880176 cites W2962919064 @default.
- W2950880176 cites W2963405909 @default.
- W2950880176 cites W2963676935 @default.
- W2950880176 cites W2965130990 @default.
- W2950880176 cites W3098848552 @default.
- W2950880176 cites W3105033759 @default.
- W2950880176 cites W3145128584 @default.
- W2950880176 cites W2604743900 @default.
- W2950880176 doi "https://doi.org/10.48550/arxiv.1702.03049" @default.
- W2950880176 hasPublicationYear "2017" @default.
- W2950880176 type Work @default.
- W2950880176 sameAs 2950880176 @default.
- W2950880176 citedByCount "2" @default.
- W2950880176 countsByYear W29508801762017 @default.
- W2950880176 crossrefType "posted-content" @default.
- W2950880176 hasAuthorship W2950880176A5030241627 @default.
- W2950880176 hasAuthorship W2950880176A5037316256 @default.
- W2950880176 hasAuthorship W2950880176A5068497963 @default.
- W2950880176 hasBestOaLocation W29508801761 @default.
- W2950880176 hasConcept C104140500 @default.
- W2950880176 hasConcept C104267543 @default.
- W2950880176 hasConcept C106487976 @default.
- W2950880176 hasConcept C11413529 @default.
- W2950880176 hasConcept C120314980 @default.
- W2950880176 hasConcept C121332964 @default.
- W2950880176 hasConcept C124101348 @default.
- W2950880176 hasConcept C124851039 @default.
- W2950880176 hasConcept C126042441 @default.
- W2950880176 hasConcept C127413603 @default.
- W2950880176 hasConcept C134306372 @default.
- W2950880176 hasConcept C135252773 @default.
- W2950880176 hasConcept C135598885 @default.
- W2950880176 hasConcept C159985019 @default.
- W2950880176 hasConcept C173608175 @default.
- W2950880176 hasConcept C192562407 @default.
- W2950880176 hasConcept C199360897 @default.
- W2950880176 hasConcept C207467116 @default.
- W2950880176 hasConcept C2524010 @default.
- W2950880176 hasConcept C2778755073 @default.
- W2950880176 hasConcept C2779843651 @default.
- W2950880176 hasConcept C2780551164 @default.
- W2950880176 hasConcept C31258907 @default.
- W2950880176 hasConcept C33923547 @default.
- W2950880176 hasConcept C41008148 @default.
- W2950880176 hasConcept C4822641 @default.
- W2950880176 hasConcept C62520636 @default.
- W2950880176 hasConcept C62611344 @default.
- W2950880176 hasConcept C66938386 @default.
- W2950880176 hasConcept C75684735 @default.
- W2950880176 hasConcept C77088390 @default.
- W2950880176 hasConcept C80444323 @default.
- W2950880176 hasConcept C84462506 @default.