Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950883642> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2950883642 endingPage "200" @default.
- W2950883642 startingPage "188" @default.
- W2950883642 abstract "Some possibilities of using convolutional artificial neural networks (ANN) for powder diffraction structural analysis of crystalline substances have been investigated. First, ANNs are used to classify crystalline systems and space groups according to calculated full-profile diffractograms calculated from the crystal structures of the ICSD database (2017 year). The ICSD database contains 192004 structures, of which 80% was used for in-depth network training, and 20% for independent testing of recognition accuracy. The accuracy of classification by a network of crystalline systems was 87.9%, and that of space groups was 77.2%. Secondly, the ANN is used for a similar classification of structural models generated by the stochastic genetic algorithm in the search processes for triclinic crystal structures of test compound K4SnO4 according to their full-profile diffraction patterns. The classification criterion was the entry of one or several atoms into their crystallographic positions in the structure of a substance. Independent deep network training was performed on 120 thousand structural models of the K4PbO4 triclinic structure generated in several runs of the genetic algorithm. The accuracy of the classification of K4SnO4 structural models exceeded 50%. The results show that deeply trained convolutional ANNs can be effective for classifying crystal structures according to the structural characteristics of their powder diffraction patterns" @default.
- W2950883642 created "2019-06-27" @default.
- W2950883642 creator A5002679497 @default.
- W2950883642 creator A5005119235 @default.
- W2950883642 creator A5041978925 @default.
- W2950883642 creator A5054266229 @default.
- W2950883642 creator A5060313572 @default.
- W2950883642 date "2019-06-01" @default.
- W2950883642 modified "2023-10-14" @default.
- W2950883642 title "Possibilities of Neural Network Powder Diffraction Analysis Crystal Structure of Chemical Compounds" @default.
- W2950883642 doi "https://doi.org/10.17516/1998-2836-0118" @default.
- W2950883642 hasPublicationYear "2019" @default.
- W2950883642 type Work @default.
- W2950883642 sameAs 2950883642 @default.
- W2950883642 citedByCount "0" @default.
- W2950883642 crossrefType "journal-article" @default.
- W2950883642 hasAuthorship W2950883642A5002679497 @default.
- W2950883642 hasAuthorship W2950883642A5005119235 @default.
- W2950883642 hasAuthorship W2950883642A5041978925 @default.
- W2950883642 hasAuthorship W2950883642A5054266229 @default.
- W2950883642 hasAuthorship W2950883642A5060313572 @default.
- W2950883642 hasBestOaLocation W29508836421 @default.
- W2950883642 hasConcept C115624301 @default.
- W2950883642 hasConcept C119857082 @default.
- W2950883642 hasConcept C120665830 @default.
- W2950883642 hasConcept C121332964 @default.
- W2950883642 hasConcept C153180895 @default.
- W2950883642 hasConcept C154945302 @default.
- W2950883642 hasConcept C185039092 @default.
- W2950883642 hasConcept C185592680 @default.
- W2950883642 hasConcept C186060115 @default.
- W2950883642 hasConcept C192562407 @default.
- W2950883642 hasConcept C207114421 @default.
- W2950883642 hasConcept C41008148 @default.
- W2950883642 hasConcept C42228675 @default.
- W2950883642 hasConcept C50644808 @default.
- W2950883642 hasConcept C8010536 @default.
- W2950883642 hasConcept C81363708 @default.
- W2950883642 hasConcept C86803240 @default.
- W2950883642 hasConcept C8880873 @default.
- W2950883642 hasConceptScore W2950883642C115624301 @default.
- W2950883642 hasConceptScore W2950883642C119857082 @default.
- W2950883642 hasConceptScore W2950883642C120665830 @default.
- W2950883642 hasConceptScore W2950883642C121332964 @default.
- W2950883642 hasConceptScore W2950883642C153180895 @default.
- W2950883642 hasConceptScore W2950883642C154945302 @default.
- W2950883642 hasConceptScore W2950883642C185039092 @default.
- W2950883642 hasConceptScore W2950883642C185592680 @default.
- W2950883642 hasConceptScore W2950883642C186060115 @default.
- W2950883642 hasConceptScore W2950883642C192562407 @default.
- W2950883642 hasConceptScore W2950883642C207114421 @default.
- W2950883642 hasConceptScore W2950883642C41008148 @default.
- W2950883642 hasConceptScore W2950883642C42228675 @default.
- W2950883642 hasConceptScore W2950883642C50644808 @default.
- W2950883642 hasConceptScore W2950883642C8010536 @default.
- W2950883642 hasConceptScore W2950883642C81363708 @default.
- W2950883642 hasConceptScore W2950883642C86803240 @default.
- W2950883642 hasConceptScore W2950883642C8880873 @default.
- W2950883642 hasLocation W29508836421 @default.
- W2950883642 hasLocation W29508836422 @default.
- W2950883642 hasLocation W29508836423 @default.
- W2950883642 hasLocation W29508836424 @default.
- W2950883642 hasLocation W29508836425 @default.
- W2950883642 hasLocation W29508836426 @default.
- W2950883642 hasLocation W29508836427 @default.
- W2950883642 hasLocation W29508836428 @default.
- W2950883642 hasOpenAccess W2950883642 @default.
- W2950883642 hasPrimaryLocation W29508836421 @default.
- W2950883642 hasRelatedWork W2034722458 @default.
- W2950883642 hasRelatedWork W2042454755 @default.
- W2950883642 hasRelatedWork W2053543510 @default.
- W2950883642 hasRelatedWork W2068347859 @default.
- W2950883642 hasRelatedWork W2073079898 @default.
- W2950883642 hasRelatedWork W2120402208 @default.
- W2950883642 hasRelatedWork W2127370541 @default.
- W2950883642 hasRelatedWork W2144193569 @default.
- W2950883642 hasRelatedWork W3135068341 @default.
- W2950883642 hasRelatedWork W2338960258 @default.
- W2950883642 isParatext "false" @default.
- W2950883642 isRetracted "false" @default.
- W2950883642 magId "2950883642" @default.
- W2950883642 workType "article" @default.