Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950891689> ?p ?o ?g. }
- W2950891689 abstract "Following detection and tracking of traffic actors, prediction of their future motion is the next critical component of a self-driving vehicle (SDV) technology, allowing the SDV to operate safely and efficiently in its environment. This is particularly important when it comes to vulnerable road users (VRUs), such as pedestrians and bicyclists. These actors need to be handled with special care due to an increased risk of injury, as well as the fact that their behavior is less predictable than that of motorized actors. To address this issue, in the current study we present a deep learning-based method for predicting VRU movement, where we rasterize high-definition maps and actor's surroundings into a bird's-eye view image used as an input to deep convolutional networks. In addition, we propose a fast architecture suitable for real-time inference, and perform an ablation study of various rasterization approaches to find the optimal choice for accurate prediction. The results strongly indicate benefits of using the proposed approach for motion prediction of VRUs, both in terms of accuracy and latency." @default.
- W2950891689 created "2019-06-27" @default.
- W2950891689 creator A5007055093 @default.
- W2950891689 creator A5015191599 @default.
- W2950891689 creator A5020130295 @default.
- W2950891689 creator A5026244838 @default.
- W2950891689 creator A5043710350 @default.
- W2950891689 creator A5055199976 @default.
- W2950891689 creator A5056056471 @default.
- W2950891689 creator A5082498217 @default.
- W2950891689 creator A5085497926 @default.
- W2950891689 date "2019-06-20" @default.
- W2950891689 modified "2023-09-23" @default.
- W2950891689 title "Predicting Motion of Vulnerable Road Users using High-Definition Maps and Efficient ConvNets" @default.
- W2950891689 cites W1522301498 @default.
- W2950891689 cites W1686810756 @default.
- W2950891689 cites W1749494163 @default.
- W2950891689 cites W1982077462 @default.
- W2950891689 cites W1986864914 @default.
- W2950891689 cites W2064675550 @default.
- W2950891689 cites W2098774185 @default.
- W2950891689 cites W2101821104 @default.
- W2950891689 cites W2118021859 @default.
- W2950891689 cites W2140542425 @default.
- W2950891689 cites W2146183743 @default.
- W2950891689 cites W2167052694 @default.
- W2950891689 cites W2167224731 @default.
- W2950891689 cites W2194775991 @default.
- W2950891689 cites W2257979135 @default.
- W2950891689 cites W2396345911 @default.
- W2950891689 cites W2424778531 @default.
- W2950891689 cites W2463627759 @default.
- W2950891689 cites W2508946775 @default.
- W2950891689 cites W2553303224 @default.
- W2950891689 cites W2612445135 @default.
- W2950891689 cites W2617510024 @default.
- W2950891689 cites W2740801047 @default.
- W2950891689 cites W2766836212 @default.
- W2950891689 cites W2787998955 @default.
- W2950891689 cites W2794787653 @default.
- W2950891689 cites W2796438033 @default.
- W2950891689 cites W2798930779 @default.
- W2950891689 cites W2810229282 @default.
- W2950891689 cites W2886953980 @default.
- W2950891689 cites W2888662204 @default.
- W2950891689 cites W2898900571 @default.
- W2950891689 cites W2963125010 @default.
- W2950891689 cites W2964079724 @default.
- W2950891689 cites W2964160397 @default.
- W2950891689 cites W3010427722 @default.
- W2950891689 cites W641082448 @default.
- W2950891689 hasPublicationYear "2019" @default.
- W2950891689 type Work @default.
- W2950891689 sameAs 2950891689 @default.
- W2950891689 citedByCount "15" @default.
- W2950891689 countsByYear W29508916892018 @default.
- W2950891689 countsByYear W29508916892019 @default.
- W2950891689 countsByYear W29508916892020 @default.
- W2950891689 countsByYear W29508916892021 @default.
- W2950891689 crossrefType "posted-content" @default.
- W2950891689 hasAuthorship W2950891689A5007055093 @default.
- W2950891689 hasAuthorship W2950891689A5015191599 @default.
- W2950891689 hasAuthorship W2950891689A5020130295 @default.
- W2950891689 hasAuthorship W2950891689A5026244838 @default.
- W2950891689 hasAuthorship W2950891689A5043710350 @default.
- W2950891689 hasAuthorship W2950891689A5055199976 @default.
- W2950891689 hasAuthorship W2950891689A5056056471 @default.
- W2950891689 hasAuthorship W2950891689A5082498217 @default.
- W2950891689 hasAuthorship W2950891689A5085497926 @default.
- W2950891689 hasConcept C104114177 @default.
- W2950891689 hasConcept C108583219 @default.
- W2950891689 hasConcept C121332964 @default.
- W2950891689 hasConcept C123657996 @default.
- W2950891689 hasConcept C154945302 @default.
- W2950891689 hasConcept C166957645 @default.
- W2950891689 hasConcept C168167062 @default.
- W2950891689 hasConcept C205649164 @default.
- W2950891689 hasConcept C2776214188 @default.
- W2950891689 hasConcept C31972630 @default.
- W2950891689 hasConcept C41008148 @default.
- W2950891689 hasConcept C76155785 @default.
- W2950891689 hasConcept C82876162 @default.
- W2950891689 hasConcept C97355855 @default.
- W2950891689 hasConceptScore W2950891689C104114177 @default.
- W2950891689 hasConceptScore W2950891689C108583219 @default.
- W2950891689 hasConceptScore W2950891689C121332964 @default.
- W2950891689 hasConceptScore W2950891689C123657996 @default.
- W2950891689 hasConceptScore W2950891689C154945302 @default.
- W2950891689 hasConceptScore W2950891689C166957645 @default.
- W2950891689 hasConceptScore W2950891689C168167062 @default.
- W2950891689 hasConceptScore W2950891689C205649164 @default.
- W2950891689 hasConceptScore W2950891689C2776214188 @default.
- W2950891689 hasConceptScore W2950891689C31972630 @default.
- W2950891689 hasConceptScore W2950891689C41008148 @default.
- W2950891689 hasConceptScore W2950891689C76155785 @default.
- W2950891689 hasConceptScore W2950891689C82876162 @default.
- W2950891689 hasConceptScore W2950891689C97355855 @default.
- W2950891689 hasOpenAccess W2950891689 @default.
- W2950891689 hasRelatedWork W1749494163 @default.
- W2950891689 hasRelatedWork W2105934661 @default.