Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950894639> ?p ?o ?g. }
- W2950894639 abstract "Abstract Understanding and quantifying the transmission of zoonotic pathogens is essential for directing public health responses, especially for pathogens capable of transmission between humans. However, determining a pathogen’s transmission dynamics is complicated by challenges often encountered in zoonotic disease surveillance, including unobserved sources of transmission (both human and zoonotic), limited spatial information, and unknown scope of surveillance. In this work, we present a model-based inference method that addresses these challenges for subcritical zoonotic pathogens using a spatial model with two levels of mixing. After demonstrating the robustness of the method using simulation studies, we apply the new method to a dataset of human monkeypox cases detected during an active surveillance program from 1982-1986 in the Democratic Republic of the Congo (DRC). Our results provide estimates of the reproductive number and spillover rate of monkeypox during this surveillance period and suggest that most human-to-human transmission events occur over distances of 30km or less. Taking advantage of contact-tracing data available for a subset of monkeypox cases, we find that around 80% of contact-traced links could be correctly recovered from transmission trees inferred using only date and location. Our results highlight the importance of identifying the appropriate spatial scale of transmission, and show how even imperfect spatiotemporal data can be incorporated into models to obtain reliable estimates of human-to-human transmission patterns. Author Summary Surveillance datasets are often the only sources of information about the ecology and epidemiology of zoonotic infectious diseases. Methods that can extract as much information as possible from these datasets therefore provide a key advantage for informing our understanding of the disease dynamics and improving our ability to choose the optimal intervention strategy. We developed and tested a likelihood-based inference method based on a mechanistic model of the spillover and human-to-human transmission processes. We first used simulated datasets to explore which information about the disease dynamics of a subcritical zoonotic pathogen could be successfully extracted from a line-list surveillance dataset with non-localized spatial information and unknown geographic coverage. We then applied the method to a dataset of human monkeypox cases detected during an active surveillance program in the Democratic Republic of the Congo between 1982 and 1986 to obtain estimates of the reproductive number, spillover rate, and spatial dispersal of monkeypox in humans." @default.
- W2950894639 created "2019-06-27" @default.
- W2950894639 creator A5019184456 @default.
- W2950894639 creator A5042407414 @default.
- W2950894639 creator A5052393296 @default.
- W2950894639 creator A5056795800 @default.
- W2950894639 creator A5058964141 @default.
- W2950894639 creator A5060555872 @default.
- W2950894639 date "2019-06-19" @default.
- W2950894639 modified "2023-09-27" @default.
- W2950894639 title "Quantifying transmission of emerging zoonoses: Using mathematical models to maximize the value of surveillance data" @default.
- W2950894639 cites W1501261568 @default.
- W2950894639 cites W1762917246 @default.
- W2950894639 cites W1932806540 @default.
- W2950894639 cites W1965457228 @default.
- W2950894639 cites W1969952035 @default.
- W2950894639 cites W1975375203 @default.
- W2950894639 cites W1976604411 @default.
- W2950894639 cites W1984841045 @default.
- W2950894639 cites W1987172805 @default.
- W2950894639 cites W2006423444 @default.
- W2950894639 cites W2028594189 @default.
- W2950894639 cites W2046688025 @default.
- W2950894639 cites W2047196305 @default.
- W2950894639 cites W2057443000 @default.
- W2950894639 cites W2062059173 @default.
- W2950894639 cites W2071148635 @default.
- W2950894639 cites W2072246903 @default.
- W2950894639 cites W2079848860 @default.
- W2950894639 cites W2087164456 @default.
- W2950894639 cites W2096181237 @default.
- W2950894639 cites W2097488534 @default.
- W2950894639 cites W2098291520 @default.
- W2950894639 cites W2101512403 @default.
- W2950894639 cites W2102187991 @default.
- W2950894639 cites W2103806178 @default.
- W2950894639 cites W2110204999 @default.
- W2950894639 cites W2117730239 @default.
- W2950894639 cites W2122612332 @default.
- W2950894639 cites W2122919191 @default.
- W2950894639 cites W2127435093 @default.
- W2950894639 cites W2130203599 @default.
- W2950894639 cites W2131706225 @default.
- W2950894639 cites W2139229827 @default.
- W2950894639 cites W2148534890 @default.
- W2950894639 cites W2148812002 @default.
- W2950894639 cites W2154625168 @default.
- W2950894639 cites W2155823264 @default.
- W2950894639 cites W2160783346 @default.
- W2950894639 cites W2163295239 @default.
- W2950894639 cites W2474332984 @default.
- W2950894639 cites W2482029392 @default.
- W2950894639 cites W2516104505 @default.
- W2950894639 cites W2516940191 @default.
- W2950894639 cites W2618653913 @default.
- W2950894639 cites W2700382303 @default.
- W2950894639 cites W2756161422 @default.
- W2950894639 cites W2796178083 @default.
- W2950894639 cites W2890756572 @default.
- W2950894639 cites W2952215878 @default.
- W2950894639 cites W4243415404 @default.
- W2950894639 doi "https://doi.org/10.1101/677021" @default.
- W2950894639 hasPublicationYear "2019" @default.
- W2950894639 type Work @default.
- W2950894639 sameAs 2950894639 @default.
- W2950894639 citedByCount "6" @default.
- W2950894639 countsByYear W29508946392020 @default.
- W2950894639 countsByYear W29508946392021 @default.
- W2950894639 countsByYear W29508946392022 @default.
- W2950894639 crossrefType "posted-content" @default.
- W2950894639 hasAuthorship W2950894639A5019184456 @default.
- W2950894639 hasAuthorship W2950894639A5042407414 @default.
- W2950894639 hasAuthorship W2950894639A5052393296 @default.
- W2950894639 hasAuthorship W2950894639A5056795800 @default.
- W2950894639 hasAuthorship W2950894639A5058964141 @default.
- W2950894639 hasAuthorship W2950894639A5060555872 @default.
- W2950894639 hasBestOaLocation W29508946391 @default.
- W2950894639 hasConcept C104317684 @default.
- W2950894639 hasConcept C138816342 @default.
- W2950894639 hasConcept C159110408 @default.
- W2950894639 hasConcept C205649164 @default.
- W2950894639 hasConcept C2776480101 @default.
- W2950894639 hasConcept C2778011067 @default.
- W2950894639 hasConcept C2781356689 @default.
- W2950894639 hasConcept C40767141 @default.
- W2950894639 hasConcept C41008148 @default.
- W2950894639 hasConcept C55493867 @default.
- W2950894639 hasConcept C71924100 @default.
- W2950894639 hasConcept C761482 @default.
- W2950894639 hasConcept C76155785 @default.
- W2950894639 hasConcept C86803240 @default.
- W2950894639 hasConceptScore W2950894639C104317684 @default.
- W2950894639 hasConceptScore W2950894639C138816342 @default.
- W2950894639 hasConceptScore W2950894639C159110408 @default.
- W2950894639 hasConceptScore W2950894639C205649164 @default.
- W2950894639 hasConceptScore W2950894639C2776480101 @default.
- W2950894639 hasConceptScore W2950894639C2778011067 @default.
- W2950894639 hasConceptScore W2950894639C2781356689 @default.
- W2950894639 hasConceptScore W2950894639C40767141 @default.
- W2950894639 hasConceptScore W2950894639C41008148 @default.