Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950895949> ?p ?o ?g. }
- W2950895949 abstract "Abstract As we fall sleep, our brain traverses a series of gradual changes at physiological, behavioural and cognitive levels, which are not yet fully understood. The loss of responsiveness is a critical event in the transition from wakefulness to sleep. Here we seek to understand the electrophysiological signatures that reflect the loss of capacity to respond to external stimuli during drowsiness using two complementary methods: spectral connectivity and EEG microstates. Furthermore, we integrate these two methods for the first time by investigating the connectivity patterns captured during individual microstate lifetimes. While participants performed an auditory semantic classification task, we allowed them to become drowsy and unresponsive. As they stopped responding to the stimuli, we report the breakdown of frontoparietal alpha networks and the emergence of frontoparietal theta connectivity. Further, we show that the temporal dynamics of all canonical EEG microstates slow down during unresponsiveness. We identify a specific microstate (D) whose occurrence and duration are prominently increased during this period. Employing machine learning, we show that the temporal properties of microstate D, particularly its prolonged duration, predicts the response likelihood to individual stimuli. Finally, we find a novel relationship between microstates and brain networks as we show that microstate D uniquely indexes significantly stronger theta connectivity during unresponsiveness. Our findings demonstrate that the transition to unconsciousness is not linear, but rather consists of an interplay between transient brain networks reflecting different degrees of sleep depth. Author summary How do we lose responsiveness as we fall asleep? As we become sleepy, our ability to react to external stimuli disappears gradually. Here we sought to understand the rapid fluctuations in brain electrical activity that predict the loss of responsiveness as participants fell asleep while performing a word classification task. We analysed the patterns of connectivity between anterior and posterior brain regions observed during wakefulness in alpha band and showed that this connectivity shifted to slower theta frequencies as participants became unresponsive. We also investigated the dynamics of brain electrical microstates, which represent an alphabet of quasi-stable global brain states with lifetimes of 10-100 milliseconds, and found that the temporal dynamics of microstates slowed down when participants became unresponsive. Using machine learning, we further showed that microstate dynamics prior to a stimulus predict whether subjects will respond to it. We integrated microstates and connectivity for the first time to show that a specific microstate captures connectivity patterns correlated with unresponsiveness during this transition. We conclude that falling asleep is accompanied by a millisecond-level interplay between distinct brain networks, and suggest a renewed focus on fine-grained temporal scales in the study of transitions between levels of consciousness." @default.
- W2950895949 created "2019-06-27" @default.
- W2950895949 creator A5032013007 @default.
- W2950895949 creator A5041126778 @default.
- W2950895949 creator A5091399910 @default.
- W2950895949 date "2017-12-20" @default.
- W2950895949 modified "2023-09-24" @default.
- W2950895949 title "Transient topographical dynamics of the electroencephalogram predict brain connectivity and behavioural responsiveness during drowsiness" @default.
- W2950895949 cites W1699209025 @default.
- W2950895949 cites W1819375444 @default.
- W2950895949 cites W1965087019 @default.
- W2950895949 cites W1966641148 @default.
- W2950895949 cites W1970545979 @default.
- W2950895949 cites W1970814894 @default.
- W2950895949 cites W1976311641 @default.
- W2950895949 cites W1976522288 @default.
- W2950895949 cites W1976526581 @default.
- W2950895949 cites W1979612257 @default.
- W2950895949 cites W1980455221 @default.
- W2950895949 cites W1984910756 @default.
- W2950895949 cites W1994566202 @default.
- W2950895949 cites W1998795199 @default.
- W2950895949 cites W2002996884 @default.
- W2950895949 cites W2003922371 @default.
- W2950895949 cites W2007735192 @default.
- W2950895949 cites W2011075148 @default.
- W2950895949 cites W2011251121 @default.
- W2950895949 cites W2014833688 @default.
- W2950895949 cites W2016468036 @default.
- W2950895949 cites W2021170440 @default.
- W2950895949 cites W2024509615 @default.
- W2950895949 cites W2041570400 @default.
- W2950895949 cites W2041726036 @default.
- W2950895949 cites W2043614583 @default.
- W2950895949 cites W2054836518 @default.
- W2950895949 cites W2057569029 @default.
- W2950895949 cites W2059395201 @default.
- W2950895949 cites W2062526841 @default.
- W2950895949 cites W2066263596 @default.
- W2950895949 cites W2067962467 @default.
- W2950895949 cites W2069573252 @default.
- W2950895949 cites W2087302183 @default.
- W2950895949 cites W2092938608 @default.
- W2950895949 cites W2098418070 @default.
- W2950895949 cites W2099943815 @default.
- W2950895949 cites W2100959503 @default.
- W2950895949 cites W2105381419 @default.
- W2950895949 cites W2106873519 @default.
- W2950895949 cites W2108735670 @default.
- W2950895949 cites W2109187468 @default.
- W2950895949 cites W2109262751 @default.
- W2950895949 cites W2109622017 @default.
- W2950895949 cites W2111406541 @default.
- W2950895949 cites W2122451799 @default.
- W2950895949 cites W2123671071 @default.
- W2950895949 cites W2128495200 @default.
- W2950895949 cites W2130031954 @default.
- W2950895949 cites W2131216884 @default.
- W2950895949 cites W2132693675 @default.
- W2950895949 cites W2134006491 @default.
- W2950895949 cites W2135390742 @default.
- W2950895949 cites W2142490264 @default.
- W2950895949 cites W2148261180 @default.
- W2950895949 cites W2148670808 @default.
- W2950895949 cites W2162425795 @default.
- W2950895949 cites W2164784039 @default.
- W2950895949 cites W2165892338 @default.
- W2950895949 cites W2232938174 @default.
- W2950895949 cites W2262410325 @default.
- W2950895949 cites W2282650616 @default.
- W2950895949 cites W2318802957 @default.
- W2950895949 cites W2339840868 @default.
- W2950895949 cites W2405551617 @default.
- W2950895949 cites W2484372683 @default.
- W2950895949 cites W2568040240 @default.
- W2950895949 cites W2745724374 @default.
- W2950895949 cites W4292865245 @default.
- W2950895949 cites W45311890 @default.
- W2950895949 cites W652013032 @default.
- W2950895949 doi "https://doi.org/10.1101/231464" @default.
- W2950895949 hasPublicationYear "2017" @default.
- W2950895949 type Work @default.
- W2950895949 sameAs 2950895949 @default.
- W2950895949 citedByCount "2" @default.
- W2950895949 countsByYear W29508959492018 @default.
- W2950895949 countsByYear W29508959492019 @default.
- W2950895949 crossrefType "posted-content" @default.
- W2950895949 hasAuthorship W2950895949A5032013007 @default.
- W2950895949 hasAuthorship W2950895949A5041126778 @default.
- W2950895949 hasAuthorship W2950895949A5091399910 @default.
- W2950895949 hasBestOaLocation W29508959491 @default.
- W2950895949 hasConcept C15744967 @default.
- W2950895949 hasConcept C169760540 @default.
- W2950895949 hasConcept C180747234 @default.
- W2950895949 hasConcept C185263204 @default.
- W2950895949 hasConcept C2779320081 @default.
- W2950895949 hasConcept C45424060 @default.
- W2950895949 hasConcept C522805319 @default.
- W2950895949 hasConceptScore W2950895949C15744967 @default.
- W2950895949 hasConceptScore W2950895949C169760540 @default.