Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950905533> ?p ?o ?g. }
- W2950905533 endingPage "5649" @default.
- W2950905533 startingPage "5631" @default.
- W2950905533 abstract "River wetted width (RWW) is an important variable in the study of river hydrological and biogeochemical processes. Presently, RWW is often measured from remotely sensed imagery, and the accuracy of RWW estimation is typically low when coarse spatial resolution imagery is used because river boundaries often run through pixels that represent a region that is a mixture of water and land. Thus, when conventional hard classification methods are used in the estimation of RWW, the mixed pixel problem can become a large source of error. To address this problem, this paper proposes a novel approach to measure RWW at the subpixel scale. Spectral unmixing is first applied to the imagery to obtain a water fraction image that indicates the proportional coverage of water in image pixels. A fine spatial resolution river map from which RWW may be estimated is then produced from the water fraction image by superresolution mapping (SRM). In the SRM analysis, a deep convolutional neural network is used to eliminate the negative effects of water fraction errors and reconstruct the geographical distribution of water. The proposed approach is assessed in two experiments, with the results demonstrating that the convolutional neural network-based SRM model can effectively estimate subpixel scale details of rivers and that the accuracy of RWW estimation is substantially higher than that obtained from the use of a conventional hard image classification. The improvement shows that the proposed method has great potential to derive more accurate RWW values from remotely sensed imagery." @default.
- W2950905533 created "2019-06-27" @default.
- W2950905533 creator A5012444471 @default.
- W2950905533 creator A5021827773 @default.
- W2950905533 creator A5031294692 @default.
- W2950905533 creator A5034678630 @default.
- W2950905533 creator A5046965940 @default.
- W2950905533 creator A5050842977 @default.
- W2950905533 creator A5053923666 @default.
- W2950905533 creator A5054563725 @default.
- W2950905533 creator A5064629520 @default.
- W2950905533 creator A5072404159 @default.
- W2950905533 creator A5075448214 @default.
- W2950905533 date "2019-07-01" @default.
- W2950905533 modified "2023-10-17" @default.
- W2950905533 title "Measuring River Wetted Width From Remotely Sensed Imagery at the Subpixel Scale With a Deep Convolutional Neural Network" @default.
- W2950905533 cites W1480063561 @default.
- W2950905533 cites W1835469004 @default.
- W2950905533 cites W1885185971 @default.
- W2950905533 cites W1971233020 @default.
- W2950905533 cites W1983720606 @default.
- W2950905533 cites W1987216185 @default.
- W2950905533 cites W1988883312 @default.
- W2950905533 cites W1990368143 @default.
- W2950905533 cites W2002325557 @default.
- W2950905533 cites W2010787455 @default.
- W2950905533 cites W2019641472 @default.
- W2950905533 cites W2021324314 @default.
- W2950905533 cites W2025140748 @default.
- W2950905533 cites W2033355897 @default.
- W2950905533 cites W2037432545 @default.
- W2950905533 cites W2039957307 @default.
- W2950905533 cites W2048833558 @default.
- W2950905533 cites W2060384859 @default.
- W2950905533 cites W2063453643 @default.
- W2950905533 cites W2073626642 @default.
- W2950905533 cites W2077756867 @default.
- W2950905533 cites W2081346329 @default.
- W2950905533 cites W2082302033 @default.
- W2950905533 cites W2101678239 @default.
- W2950905533 cites W2102310178 @default.
- W2950905533 cites W2108457453 @default.
- W2950905533 cites W2113753426 @default.
- W2950905533 cites W2123250693 @default.
- W2950905533 cites W2136635809 @default.
- W2950905533 cites W2142413146 @default.
- W2950905533 cites W2144881411 @default.
- W2950905533 cites W2147347890 @default.
- W2950905533 cites W2151747974 @default.
- W2950905533 cites W2156259061 @default.
- W2950905533 cites W2167533190 @default.
- W2950905533 cites W2167903638 @default.
- W2950905533 cites W2170772598 @default.
- W2950905533 cites W2171658753 @default.
- W2950905533 cites W2267362924 @default.
- W2950905533 cites W2317026442 @default.
- W2950905533 cites W2382890953 @default.
- W2950905533 cites W2412588858 @default.
- W2950905533 cites W2508457857 @default.
- W2950905533 cites W2604521289 @default.
- W2950905533 cites W2605759019 @default.
- W2950905533 cites W2621021710 @default.
- W2950905533 cites W2785583251 @default.
- W2950905533 cites W2791264291 @default.
- W2950905533 cites W2804279190 @default.
- W2950905533 cites W2811310577 @default.
- W2950905533 cites W2885696803 @default.
- W2950905533 cites W3106370744 @default.
- W2950905533 doi "https://doi.org/10.1029/2018wr024136" @default.
- W2950905533 hasPublicationYear "2019" @default.
- W2950905533 type Work @default.
- W2950905533 sameAs 2950905533 @default.
- W2950905533 citedByCount "43" @default.
- W2950905533 countsByYear W29509055332020 @default.
- W2950905533 countsByYear W29509055332021 @default.
- W2950905533 countsByYear W29509055332022 @default.
- W2950905533 countsByYear W29509055332023 @default.
- W2950905533 crossrefType "journal-article" @default.
- W2950905533 hasAuthorship W2950905533A5012444471 @default.
- W2950905533 hasAuthorship W2950905533A5021827773 @default.
- W2950905533 hasAuthorship W2950905533A5031294692 @default.
- W2950905533 hasAuthorship W2950905533A5034678630 @default.
- W2950905533 hasAuthorship W2950905533A5046965940 @default.
- W2950905533 hasAuthorship W2950905533A5050842977 @default.
- W2950905533 hasAuthorship W2950905533A5053923666 @default.
- W2950905533 hasAuthorship W2950905533A5054563725 @default.
- W2950905533 hasAuthorship W2950905533A5064629520 @default.
- W2950905533 hasAuthorship W2950905533A5072404159 @default.
- W2950905533 hasAuthorship W2950905533A5075448214 @default.
- W2950905533 hasBestOaLocation W29509055332 @default.
- W2950905533 hasConcept C127313418 @default.
- W2950905533 hasConcept C153180895 @default.
- W2950905533 hasConcept C154945302 @default.
- W2950905533 hasConcept C160633673 @default.
- W2950905533 hasConcept C205372480 @default.
- W2950905533 hasConcept C205649164 @default.
- W2950905533 hasConcept C2778755073 @default.
- W2950905533 hasConcept C41008148 @default.