Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950906573> ?p ?o ?g. }
- W2950906573 abstract "In this work we propose a novel approach to perform segmentation by leveraging the abstraction capabilities of convolutional neural networks (CNNs). Our method is based on Hough voting, a strategy that allows for fully automatic localisation and segmentation of the anatomies of interest. This approach does not only use the CNN classification outcomes, but it also implements voting by exploiting the features produced by the deepest portion of the network. We show that this learning-based segmentation method is robust, multi-region, flexible and can be easily adapted to different modalities. In the attempt to show the capabilities and the behaviour of CNNs when they are applied to medical image analysis, we perform a systematic study of the performances of six different network architectures, conceived according to state-of-the-art criteria, in various situations. We evaluate the impact of both different amount of training data and different data dimensionality (2D, 2.5D and 3D) on the final results. We show results on both MRI and transcranial US volumes depicting respectively 26 regions of the basal ganglia and the midbrain." @default.
- W2950906573 created "2019-06-27" @default.
- W2950906573 creator A5017342460 @default.
- W2950906573 creator A5031842791 @default.
- W2950906573 creator A5040968850 @default.
- W2950906573 creator A5045779140 @default.
- W2950906573 creator A5046896448 @default.
- W2950906573 creator A5048253252 @default.
- W2950906573 creator A5054234902 @default.
- W2950906573 creator A5059769950 @default.
- W2950906573 creator A5067875130 @default.
- W2950906573 creator A5084033552 @default.
- W2950906573 creator A5084741306 @default.
- W2950906573 date "2016-01-26" @default.
- W2950906573 modified "2023-09-27" @default.
- W2950906573 title "Hough-CNN: Deep Learning for Segmentation of Deep Brain Regions in MRI and Ultrasound" @default.
- W2950906573 cites W144926097 @default.
- W2950906573 cites W1582640985 @default.
- W2950906573 cites W1677182931 @default.
- W2950906573 cites W1686810756 @default.
- W2950906573 cites W1849277567 @default.
- W2950906573 cites W1878638972 @default.
- W2950906573 cites W1884191083 @default.
- W2950906573 cites W1894871967 @default.
- W2950906573 cites W1904365287 @default.
- W2950906573 cites W1915761309 @default.
- W2950906573 cites W1966192780 @default.
- W2950906573 cites W1967251218 @default.
- W2950906573 cites W1970456555 @default.
- W2950906573 cites W1973255633 @default.
- W2950906573 cites W1974369017 @default.
- W2950906573 cites W2008627340 @default.
- W2950906573 cites W2027135714 @default.
- W2950906573 cites W2057360986 @default.
- W2950906573 cites W2077078942 @default.
- W2950906573 cites W2082670549 @default.
- W2950906573 cites W2086504823 @default.
- W2950906573 cites W2089940272 @default.
- W2950906573 cites W2097117768 @default.
- W2950906573 cites W2102605133 @default.
- W2950906573 cites W2108029278 @default.
- W2950906573 cites W2130306094 @default.
- W2950906573 cites W2132587081 @default.
- W2950906573 cites W2150450001 @default.
- W2950906573 cites W2167510172 @default.
- W2950906573 cites W2168571645 @default.
- W2950906573 cites W2169805405 @default.
- W2950906573 cites W2171740948 @default.
- W2950906573 cites W22040386 @default.
- W2950906573 cites W2216669474 @default.
- W2950906573 cites W2406638278 @default.
- W2950906573 cites W2919115771 @default.
- W2950906573 cites W2949941598 @default.
- W2950906573 cites W2950094539 @default.
- W2950906573 cites W2952584647 @default.
- W2950906573 cites W2963542991 @default.
- W2950906573 cites W2288419001 @default.
- W2950906573 hasPublicationYear "2016" @default.
- W2950906573 type Work @default.
- W2950906573 sameAs 2950906573 @default.
- W2950906573 citedByCount "6" @default.
- W2950906573 countsByYear W29509065732016 @default.
- W2950906573 countsByYear W29509065732019 @default.
- W2950906573 countsByYear W29509065732020 @default.
- W2950906573 crossrefType "posted-content" @default.
- W2950906573 hasAuthorship W2950906573A5017342460 @default.
- W2950906573 hasAuthorship W2950906573A5031842791 @default.
- W2950906573 hasAuthorship W2950906573A5040968850 @default.
- W2950906573 hasAuthorship W2950906573A5045779140 @default.
- W2950906573 hasAuthorship W2950906573A5046896448 @default.
- W2950906573 hasAuthorship W2950906573A5048253252 @default.
- W2950906573 hasAuthorship W2950906573A5054234902 @default.
- W2950906573 hasAuthorship W2950906573A5059769950 @default.
- W2950906573 hasAuthorship W2950906573A5067875130 @default.
- W2950906573 hasAuthorship W2950906573A5084033552 @default.
- W2950906573 hasAuthorship W2950906573A5084741306 @default.
- W2950906573 hasConcept C108583219 @default.
- W2950906573 hasConcept C111030470 @default.
- W2950906573 hasConcept C111472728 @default.
- W2950906573 hasConcept C115961682 @default.
- W2950906573 hasConcept C119857082 @default.
- W2950906573 hasConcept C124304363 @default.
- W2950906573 hasConcept C138885662 @default.
- W2950906573 hasConcept C153180895 @default.
- W2950906573 hasConcept C154945302 @default.
- W2950906573 hasConcept C200518788 @default.
- W2950906573 hasConcept C31972630 @default.
- W2950906573 hasConcept C41008148 @default.
- W2950906573 hasConcept C81363708 @default.
- W2950906573 hasConcept C89600930 @default.
- W2950906573 hasConceptScore W2950906573C108583219 @default.
- W2950906573 hasConceptScore W2950906573C111030470 @default.
- W2950906573 hasConceptScore W2950906573C111472728 @default.
- W2950906573 hasConceptScore W2950906573C115961682 @default.
- W2950906573 hasConceptScore W2950906573C119857082 @default.
- W2950906573 hasConceptScore W2950906573C124304363 @default.
- W2950906573 hasConceptScore W2950906573C138885662 @default.
- W2950906573 hasConceptScore W2950906573C153180895 @default.
- W2950906573 hasConceptScore W2950906573C154945302 @default.
- W2950906573 hasConceptScore W2950906573C200518788 @default.