Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950932517> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2950932517 abstract "The detection and identification of individual species based on images or audio recordings has shown significant performance increase over the last few years, thanks to recent advances in deep learning. Reliable automatic species recognition provides a promising tool for biodiversity monitoring, research and education. Image-based plant identification, for example, now comes close to the most advanced human expertise (Bonnet et al. 2018, Lasseck 2018a). Besides improved machine learning algorithms, neural network architectures, deep learning frameworks and computer hardware, a major reason for the gain in performance is the increasing abundance of biodiversity training data, either from observational networks and data providers like GBIF, Xeno-canto, iNaturalist, etc. or natural history museum collections like the Animal Sound Archive of the Museum für Naturkunde. However, in many cases, this occurrence data is still insufficient for data-intensive deep learning approaches and is often unbalanced, with only few examples for very rare species. To overcome these limitations, data augmentation can be used. This technique synthetically creates more training samples by applying various subtle random manipulations to the original data in a label-preserving way without changing the content. In the talk, we will present augmentation methods for images and audio data. The positive effect on identification performance will be evaluated on different large-scale data sets from recent plant and bird identification (LifeCLEF 2017, 2018) and detection (DCASE 2018) challenges (Lasseck 2017, Lasseck 2018b, Lasseck 2018c)." @default.
- W2950932517 created "2019-06-27" @default.
- W2950932517 creator A5007257236 @default.
- W2950932517 date "2019-06-19" @default.
- W2950932517 modified "2023-10-17" @default.
- W2950932517 title "Augmentation Methods for Biodiversity Training Data" @default.
- W2950932517 cites W2809392135 @default.
- W2950932517 doi "https://doi.org/10.3897/biss.3.37307" @default.
- W2950932517 hasPublicationYear "2019" @default.
- W2950932517 type Work @default.
- W2950932517 sameAs 2950932517 @default.
- W2950932517 citedByCount "1" @default.
- W2950932517 countsByYear W29509325172021 @default.
- W2950932517 crossrefType "journal-article" @default.
- W2950932517 hasAuthorship W2950932517A5007257236 @default.
- W2950932517 hasBestOaLocation W29509325171 @default.
- W2950932517 hasConcept C108583219 @default.
- W2950932517 hasConcept C116834253 @default.
- W2950932517 hasConcept C119857082 @default.
- W2950932517 hasConcept C130217890 @default.
- W2950932517 hasConcept C153294291 @default.
- W2950932517 hasConcept C154945302 @default.
- W2950932517 hasConcept C18903297 @default.
- W2950932517 hasConcept C205649164 @default.
- W2950932517 hasConcept C2522767166 @default.
- W2950932517 hasConcept C2777211547 @default.
- W2950932517 hasConcept C2778755073 @default.
- W2950932517 hasConcept C41008148 @default.
- W2950932517 hasConcept C50644808 @default.
- W2950932517 hasConcept C51632099 @default.
- W2950932517 hasConcept C58640448 @default.
- W2950932517 hasConcept C86803240 @default.
- W2950932517 hasConceptScore W2950932517C108583219 @default.
- W2950932517 hasConceptScore W2950932517C116834253 @default.
- W2950932517 hasConceptScore W2950932517C119857082 @default.
- W2950932517 hasConceptScore W2950932517C130217890 @default.
- W2950932517 hasConceptScore W2950932517C153294291 @default.
- W2950932517 hasConceptScore W2950932517C154945302 @default.
- W2950932517 hasConceptScore W2950932517C18903297 @default.
- W2950932517 hasConceptScore W2950932517C205649164 @default.
- W2950932517 hasConceptScore W2950932517C2522767166 @default.
- W2950932517 hasConceptScore W2950932517C2777211547 @default.
- W2950932517 hasConceptScore W2950932517C2778755073 @default.
- W2950932517 hasConceptScore W2950932517C41008148 @default.
- W2950932517 hasConceptScore W2950932517C50644808 @default.
- W2950932517 hasConceptScore W2950932517C51632099 @default.
- W2950932517 hasConceptScore W2950932517C58640448 @default.
- W2950932517 hasConceptScore W2950932517C86803240 @default.
- W2950932517 hasLocation W29509325171 @default.
- W2950932517 hasLocation W29509325172 @default.
- W2950932517 hasOpenAccess W2950932517 @default.
- W2950932517 hasPrimaryLocation W29509325171 @default.
- W2950932517 hasRelatedWork W3014300295 @default.
- W2950932517 hasRelatedWork W3164822677 @default.
- W2950932517 hasRelatedWork W4223943233 @default.
- W2950932517 hasRelatedWork W4225161397 @default.
- W2950932517 hasRelatedWork W4250304930 @default.
- W2950932517 hasRelatedWork W4312200629 @default.
- W2950932517 hasRelatedWork W4360585206 @default.
- W2950932517 hasRelatedWork W4364306694 @default.
- W2950932517 hasRelatedWork W4380075502 @default.
- W2950932517 hasRelatedWork W4380086463 @default.
- W2950932517 hasVolume "3" @default.
- W2950932517 isParatext "false" @default.
- W2950932517 isRetracted "false" @default.
- W2950932517 magId "2950932517" @default.
- W2950932517 workType "article" @default.