Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950943614> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2950943614 abstract "It is by now well established that, by means of the integration by part identities, all the integrals occurring in the evaluation of a Feynman graph of given topology can be expressed in terms of a few independent master integrals. It is shown in this paper that the integration by part identities can be further used for obtaining a linear system of first order differential equations for the master integrals themselves. The equations can then be used for the numerical evaluation of the amplitudes as well as for investigating their analytic properties, such as the asymptotic and threshold behaviours and the corresponding expansions (and for analytic integration purposes, when possible). The new method is illustrated through its somewhat detailed application to the case of the one loop self-mass amplitude, by explicitly working out expansions and quadrature formulas, both in arbitrary continuous dimension n and in the n to 4 limit. It is then shortly discussed which features of the new method are expected to work in the more general case of multi-point, multi-loop amplitudes." @default.
- W2950943614 created "2019-06-27" @default.
- W2950943614 creator A5014656742 @default.
- W2950943614 date "1997-11-26" @default.
- W2950943614 modified "2023-09-27" @default.
- W2950943614 title "Differential Equations for Feynman Graph Amplitudes" @default.
- W2950943614 hasPublicationYear "1997" @default.
- W2950943614 type Work @default.
- W2950943614 sameAs 2950943614 @default.
- W2950943614 citedByCount "7" @default.
- W2950943614 countsByYear W29509436142017 @default.
- W2950943614 countsByYear W29509436142020 @default.
- W2950943614 crossrefType "posted-content" @default.
- W2950943614 hasAuthorship W2950943614A5014656742 @default.
- W2950943614 hasConcept C118365987 @default.
- W2950943614 hasConcept C118615104 @default.
- W2950943614 hasConcept C120665830 @default.
- W2950943614 hasConcept C121332964 @default.
- W2950943614 hasConcept C127349201 @default.
- W2950943614 hasConcept C132525143 @default.
- W2950943614 hasConcept C134306372 @default.
- W2950943614 hasConcept C151201525 @default.
- W2950943614 hasConcept C180205008 @default.
- W2950943614 hasConcept C202444582 @default.
- W2950943614 hasConcept C28826006 @default.
- W2950943614 hasConcept C2992379347 @default.
- W2950943614 hasConcept C33676613 @default.
- W2950943614 hasConcept C33923547 @default.
- W2950943614 hasConcept C37914503 @default.
- W2950943614 hasConcept C62520636 @default.
- W2950943614 hasConcept C62869609 @default.
- W2950943614 hasConcept C65574998 @default.
- W2950943614 hasConcept C78045399 @default.
- W2950943614 hasConceptScore W2950943614C118365987 @default.
- W2950943614 hasConceptScore W2950943614C118615104 @default.
- W2950943614 hasConceptScore W2950943614C120665830 @default.
- W2950943614 hasConceptScore W2950943614C121332964 @default.
- W2950943614 hasConceptScore W2950943614C127349201 @default.
- W2950943614 hasConceptScore W2950943614C132525143 @default.
- W2950943614 hasConceptScore W2950943614C134306372 @default.
- W2950943614 hasConceptScore W2950943614C151201525 @default.
- W2950943614 hasConceptScore W2950943614C180205008 @default.
- W2950943614 hasConceptScore W2950943614C202444582 @default.
- W2950943614 hasConceptScore W2950943614C28826006 @default.
- W2950943614 hasConceptScore W2950943614C2992379347 @default.
- W2950943614 hasConceptScore W2950943614C33676613 @default.
- W2950943614 hasConceptScore W2950943614C33923547 @default.
- W2950943614 hasConceptScore W2950943614C37914503 @default.
- W2950943614 hasConceptScore W2950943614C62520636 @default.
- W2950943614 hasConceptScore W2950943614C62869609 @default.
- W2950943614 hasConceptScore W2950943614C65574998 @default.
- W2950943614 hasConceptScore W2950943614C78045399 @default.
- W2950943614 hasLocation W29509436141 @default.
- W2950943614 hasOpenAccess W2950943614 @default.
- W2950943614 hasPrimaryLocation W29509436141 @default.
- W2950943614 hasRelatedWork W1633484060 @default.
- W2950943614 hasRelatedWork W1974999630 @default.
- W2950943614 hasRelatedWork W1994265177 @default.
- W2950943614 hasRelatedWork W1995182568 @default.
- W2950943614 hasRelatedWork W2005986533 @default.
- W2950943614 hasRelatedWork W2021173673 @default.
- W2950943614 hasRelatedWork W2032556563 @default.
- W2950943614 hasRelatedWork W2032591669 @default.
- W2950943614 hasRelatedWork W2042264204 @default.
- W2950943614 hasRelatedWork W2045132656 @default.
- W2950943614 hasRelatedWork W2045835733 @default.
- W2950943614 hasRelatedWork W2087513307 @default.
- W2950943614 hasRelatedWork W2090106205 @default.
- W2950943614 hasRelatedWork W2140092737 @default.
- W2950943614 hasRelatedWork W2759397103 @default.
- W2950943614 hasRelatedWork W2949791105 @default.
- W2950943614 hasRelatedWork W2951181473 @default.
- W2950943614 hasRelatedWork W3037555746 @default.
- W2950943614 hasRelatedWork W3100066887 @default.
- W2950943614 hasRelatedWork W3102738991 @default.
- W2950943614 isParatext "false" @default.
- W2950943614 isRetracted "false" @default.
- W2950943614 magId "2950943614" @default.
- W2950943614 workType "article" @default.