Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950954798> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2950954798 abstract "Scattering problems for periodic structures have been studied a lot in the past few years. A main idea for numerical solution methods is to reduce such problems to one periodicity cell. In contrast to periodic settings, scattering from locally perturbed periodic surfaces is way more challenging. In this paper, we introduce and analyze a new numerical method to simulate scattering from locally perturbed periodic structures based on the Bloch transform. As this transform is applied only in periodic domains, we firstly rewrite the scattering problem artificially in a periodic domain. With the help of the Bloch transform, we secondly transform this problem into a coupled family of quasiperiodic problems posed in the periodicity cell. A numerical scheme then approximates the family of quasiperiodic solutions (we rely on the finite element method) and backtransformation provides the solution to the original scattering problem. In this paper, we give convergence analysis and error bounds for a Galerkin discretization in the spatial and the quasiperiodicity's unit cells. We also provide a simple and efficient way for implementation that does not require numerical integration in the quasiperiodicity, together with numerical examples for scattering from locally perturbed periodic surfaces computed by this scheme." @default.
- W2950954798 created "2019-06-27" @default.
- W2950954798 creator A5003515278 @default.
- W2950954798 creator A5065643575 @default.
- W2950954798 date "2016-11-19" @default.
- W2950954798 modified "2023-09-26" @default.
- W2950954798 title "A Floquet-Bloch transform based numerical method for scattering from locally perturbed periodic surfaces" @default.
- W2950954798 cites W1963530630 @default.
- W2950954798 cites W1964503974 @default.
- W2950954798 cites W1994284298 @default.
- W2950954798 cites W2017449639 @default.
- W2950954798 cites W2023172943 @default.
- W2950954798 cites W2035448837 @default.
- W2950954798 cites W2103806319 @default.
- W2950954798 cites W2144011747 @default.
- W2950954798 cites W2310257483 @default.
- W2950954798 cites W2479637896 @default.
- W2950954798 cites W2744106884 @default.
- W2950954798 cites W2963009834 @default.
- W2950954798 cites W580567146 @default.
- W2950954798 cites W8052360 @default.
- W2950954798 doi "https://doi.org/10.48550/arxiv.1611.06360" @default.
- W2950954798 hasPublicationYear "2016" @default.
- W2950954798 type Work @default.
- W2950954798 sameAs 2950954798 @default.
- W2950954798 citedByCount "0" @default.
- W2950954798 crossrefType "posted-content" @default.
- W2950954798 hasAuthorship W2950954798A5003515278 @default.
- W2950954798 hasAuthorship W2950954798A5065643575 @default.
- W2950954798 hasBestOaLocation W29509547981 @default.
- W2950954798 hasConcept C121332964 @default.
- W2950954798 hasConcept C134306372 @default.
- W2950954798 hasConcept C158622935 @default.
- W2950954798 hasConcept C191486275 @default.
- W2950954798 hasConcept C2780843604 @default.
- W2950954798 hasConcept C33923547 @default.
- W2950954798 hasConcept C48753275 @default.
- W2950954798 hasConcept C55637507 @default.
- W2950954798 hasConcept C55649039 @default.
- W2950954798 hasConcept C62520636 @default.
- W2950954798 hasConcept C73000952 @default.
- W2950954798 hasConceptScore W2950954798C121332964 @default.
- W2950954798 hasConceptScore W2950954798C134306372 @default.
- W2950954798 hasConceptScore W2950954798C158622935 @default.
- W2950954798 hasConceptScore W2950954798C191486275 @default.
- W2950954798 hasConceptScore W2950954798C2780843604 @default.
- W2950954798 hasConceptScore W2950954798C33923547 @default.
- W2950954798 hasConceptScore W2950954798C48753275 @default.
- W2950954798 hasConceptScore W2950954798C55637507 @default.
- W2950954798 hasConceptScore W2950954798C55649039 @default.
- W2950954798 hasConceptScore W2950954798C62520636 @default.
- W2950954798 hasConceptScore W2950954798C73000952 @default.
- W2950954798 hasLocation W29509547981 @default.
- W2950954798 hasOpenAccess W2950954798 @default.
- W2950954798 hasPrimaryLocation W29509547981 @default.
- W2950954798 hasRelatedWork W1978219042 @default.
- W2950954798 hasRelatedWork W1978303445 @default.
- W2950954798 hasRelatedWork W2033902457 @default.
- W2950954798 hasRelatedWork W2036456659 @default.
- W2950954798 hasRelatedWork W2044893072 @default.
- W2950954798 hasRelatedWork W2259236407 @default.
- W2950954798 hasRelatedWork W2550437290 @default.
- W2950954798 hasRelatedWork W2591974419 @default.
- W2950954798 hasRelatedWork W2950954798 @default.
- W2950954798 hasRelatedWork W4301292442 @default.
- W2950954798 isParatext "false" @default.
- W2950954798 isRetracted "false" @default.
- W2950954798 magId "2950954798" @default.
- W2950954798 workType "article" @default.