Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950960195> ?p ?o ?g. }
- W2950960195 endingPage "2023" @default.
- W2950960195 startingPage "2012" @default.
- W2950960195 abstract "AIM: The n‐dimensional hypervolume framework (Glob. Ecol. Biogeogr. [2014] 23:595–609) implemented through the R package 'hypervolume' is being increasingly used in ecology and biogeography. This approach offers a reliable means for comparing the niche of two or more species, through the calculation of the intersection between hypervolumes in a multidimensional space, as well as different distance metrics (minimum and centroid distance) and niche similarity indexes based on volume ratios (Sorensen–Dice and Jaccard similarity). However, given that these metrics have conceptual differences, there is still no consensus on which one(s) should be routinely used in order to assess niche similarity. The aim of this study is to provide general guidance for constructing and comparing n‐dimensional hypervolumes. LOCATION: Virtual study site. TAXON: Virtual species. METHOD: First, the literature was screened to verify the usage of the different metrics in studies (2014–2018) relying on this method. Subsequently, a comparative analysis based on simulated morphological and bioclimatic traits was performed, taking into consideration different analytical dimensions, sample sizes and algorithms for hypervolume construction. RESULTS: Literature survey revealed that there was no clear preference for one metric over the others in current studies relying on the n‐dimensional hypervolume method. In simulated data, a high correlation among similarity and distance metrics was found for all datatypes considered. For most analytical scenarios, using at least one overlap and one distance metric would be therefore the most appropriate approach for assessing niche overlap. Yet, when hypervolumes are fully disjunct, similarity metrics become uninformative and calculating the two distance metrics is recommended. The sample size and the choice of algorithm and dimensionality can lead to significant variations in the overlap of hypervolumes in the hyperspace, and therefore should be carefully considered. MAIN CONCLUSIONS: Best practise for constructing n‐dimensional hypervolumes and assessing their similarity are drawn, representing a practical aid for scientists using the 'hypervolume' R package in their research. These recommendations apply to most datatypes and analytical scenarios. The R scripts published alongside this methodological study can be modified for performing large‐scale analyses of species niches or automatically assessing pairwise similarity metrics among multiple hypervolume objects." @default.
- W2950960195 created "2019-06-27" @default.
- W2950960195 creator A5072912453 @default.
- W2950960195 date "2019-06-11" @default.
- W2950960195 modified "2023-10-12" @default.
- W2950960195 title "Assessing similarity of <i>n‐</i> dimensional hypervolumes: Which metric to use?" @default.
- W2950960195 cites W1602238219 @default.
- W2950960195 cites W1605984840 @default.
- W2950960195 cites W1608428827 @default.
- W2950960195 cites W1641033098 @default.
- W2950960195 cites W1701054150 @default.
- W2950960195 cites W1967360417 @default.
- W2950960195 cites W1981634819 @default.
- W2950960195 cites W1996320813 @default.
- W2950960195 cites W2007049610 @default.
- W2950960195 cites W2015873058 @default.
- W2950960195 cites W2049015414 @default.
- W2950960195 cites W2079018504 @default.
- W2950960195 cites W2080381418 @default.
- W2950960195 cites W2095766166 @default.
- W2950960195 cites W2110888553 @default.
- W2950960195 cites W2112776483 @default.
- W2950960195 cites W2146872113 @default.
- W2950960195 cites W2151409320 @default.
- W2950960195 cites W2169716480 @default.
- W2950960195 cites W2170176511 @default.
- W2950960195 cites W2218052335 @default.
- W2950960195 cites W2275999771 @default.
- W2950960195 cites W2294330423 @default.
- W2950960195 cites W2316240360 @default.
- W2950960195 cites W2410770611 @default.
- W2950960195 cites W2480122915 @default.
- W2950960195 cites W2487597786 @default.
- W2950960195 cites W2495134748 @default.
- W2950960195 cites W2511918285 @default.
- W2950960195 cites W2517921844 @default.
- W2950960195 cites W2582387202 @default.
- W2950960195 cites W2609932101 @default.
- W2950960195 cites W2665385562 @default.
- W2950960195 cites W2725541873 @default.
- W2950960195 cites W2734992382 @default.
- W2950960195 cites W2735419740 @default.
- W2950960195 cites W2742298415 @default.
- W2950960195 cites W2742650136 @default.
- W2950960195 cites W2751113164 @default.
- W2950960195 cites W2756798011 @default.
- W2950960195 cites W2767620815 @default.
- W2950960195 cites W2771067331 @default.
- W2950960195 cites W2774551287 @default.
- W2950960195 cites W2790167826 @default.
- W2950960195 cites W2792406207 @default.
- W2950960195 cites W2808661619 @default.
- W2950960195 cites W2890393950 @default.
- W2950960195 cites W2891432175 @default.
- W2950960195 cites W2894695249 @default.
- W2950960195 cites W2908712387 @default.
- W2950960195 cites W2915441054 @default.
- W2950960195 cites W4238380085 @default.
- W2950960195 cites W4241350055 @default.
- W2950960195 doi "https://doi.org/10.1111/jbi.13618" @default.
- W2950960195 hasPublicationYear "2019" @default.
- W2950960195 type Work @default.
- W2950960195 sameAs 2950960195 @default.
- W2950960195 citedByCount "56" @default.
- W2950960195 countsByYear W29509601952019 @default.
- W2950960195 countsByYear W29509601952020 @default.
- W2950960195 countsByYear W29509601952021 @default.
- W2950960195 countsByYear W29509601952022 @default.
- W2950960195 countsByYear W29509601952023 @default.
- W2950960195 crossrefType "journal-article" @default.
- W2950960195 hasAuthorship W2950960195A5072912453 @default.
- W2950960195 hasBestOaLocation W29509601952 @default.
- W2950960195 hasConcept C103278499 @default.
- W2950960195 hasConcept C115961682 @default.
- W2950960195 hasConcept C154945302 @default.
- W2950960195 hasConcept C162324750 @default.
- W2950960195 hasConcept C176217482 @default.
- W2950960195 hasConcept C205649164 @default.
- W2950960195 hasConcept C21547014 @default.
- W2950960195 hasConcept C33923547 @default.
- W2950960195 hasConcept C41008148 @default.
- W2950960195 hasConcept C78458016 @default.
- W2950960195 hasConcept C86803240 @default.
- W2950960195 hasConceptScore W2950960195C103278499 @default.
- W2950960195 hasConceptScore W2950960195C115961682 @default.
- W2950960195 hasConceptScore W2950960195C154945302 @default.
- W2950960195 hasConceptScore W2950960195C162324750 @default.
- W2950960195 hasConceptScore W2950960195C176217482 @default.
- W2950960195 hasConceptScore W2950960195C205649164 @default.
- W2950960195 hasConceptScore W2950960195C21547014 @default.
- W2950960195 hasConceptScore W2950960195C33923547 @default.
- W2950960195 hasConceptScore W2950960195C41008148 @default.
- W2950960195 hasConceptScore W2950960195C78458016 @default.
- W2950960195 hasConceptScore W2950960195C86803240 @default.
- W2950960195 hasFunder F4320309746 @default.
- W2950960195 hasIssue "9" @default.
- W2950960195 hasLocation W29509601951 @default.
- W2950960195 hasLocation W29509601952 @default.