Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950961818> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2950961818 abstract "The Multiplicity Conjecture (MC) of Huneke and Srinivasan provides upper and lower bounds for the multiplicity of a Cohen-Macaulay algebra $A$ in terms of the shifts appearing in the modules of the minimal free resolution (MFR) of $A$. All the examples studied so far have lead to conjecture (see $[HZ]$ and $[MNR2]$) that, moreover, the bounds of the MC are sharp if and only if $A$ has a pure MFR. Therefore, it seems a reasonable - and useful - idea to seek better, if possibly {it ad hoc}, bounds for particular classes of Cohen-Macaulay algebras. In this work we will only consider the codimension 3 case. In the first part we will stick to the bounds of the MC, and show that they hold for those algebras whose $h$-vector is that of a compressed algebra. In the second part, we will (mainly) focus on the level case: we will construct new conjectural upper and lower bounds for the multiplicity of a codimension 3 level algebra $A$, which can be expressed exclusively in terms of the $h$-vector of $A$, and which are better than (or equal to) those provided by the MC. Also, our bounds can be sharp even when the MFR of $A$ is not pure. Even though proving our bounds still appears too difficult a task in general, we are already able to show them for some interesting classes of codimension 3 level algebras $A$: namely, when $A$ is compressed, or when its $h$-vector $h(A)$ ends with $(...,3,2)$. Also, we will prove our lower bound when $h(A)$ begins with $(1,3,h_2,...)$, where $h_2leq 4$, and our upper bound when $h(A)$ ends with $(...,h_{c-1},h_c)$, where $h_{c-1}leq h_c+1$." @default.
- W2950961818 created "2019-06-27" @default.
- W2950961818 creator A5022091558 @default.
- W2950961818 date "2005-11-11" @default.
- W2950961818 modified "2023-10-01" @default.
- W2950961818 title "Improving the bounds of the Multiplicity Conjecture: the codimension 3 level case" @default.
- W2950961818 cites W1557962548 @default.
- W2950961818 cites W1558903581 @default.
- W2950961818 cites W1966954185 @default.
- W2950961818 cites W1982138688 @default.
- W2950961818 cites W1992373021 @default.
- W2950961818 cites W1998243632 @default.
- W2950961818 cites W2041116665 @default.
- W2950961818 cites W2064347376 @default.
- W2950961818 cites W2081876186 @default.
- W2950961818 cites W2102493952 @default.
- W2950961818 cites W2128987571 @default.
- W2950961818 cites W2150276362 @default.
- W2950961818 cites W2313855345 @default.
- W2950961818 hasPublicationYear "2005" @default.
- W2950961818 type Work @default.
- W2950961818 sameAs 2950961818 @default.
- W2950961818 citedByCount "0" @default.
- W2950961818 crossrefType "posted-content" @default.
- W2950961818 hasAuthorship W2950961818A5022091558 @default.
- W2950961818 hasConcept C114614502 @default.
- W2950961818 hasConcept C118615104 @default.
- W2950961818 hasConcept C134306372 @default.
- W2950961818 hasConcept C156004811 @default.
- W2950961818 hasConcept C202444582 @default.
- W2950961818 hasConcept C2524010 @default.
- W2950961818 hasConcept C2780990831 @default.
- W2950961818 hasConcept C33923547 @default.
- W2950961818 hasConcept C77553402 @default.
- W2950961818 hasConcept C83979697 @default.
- W2950961818 hasConceptScore W2950961818C114614502 @default.
- W2950961818 hasConceptScore W2950961818C118615104 @default.
- W2950961818 hasConceptScore W2950961818C134306372 @default.
- W2950961818 hasConceptScore W2950961818C156004811 @default.
- W2950961818 hasConceptScore W2950961818C202444582 @default.
- W2950961818 hasConceptScore W2950961818C2524010 @default.
- W2950961818 hasConceptScore W2950961818C2780990831 @default.
- W2950961818 hasConceptScore W2950961818C33923547 @default.
- W2950961818 hasConceptScore W2950961818C77553402 @default.
- W2950961818 hasConceptScore W2950961818C83979697 @default.
- W2950961818 hasLocation W29509618181 @default.
- W2950961818 hasOpenAccess W2950961818 @default.
- W2950961818 hasPrimaryLocation W29509618181 @default.
- W2950961818 hasRelatedWork W1505538982 @default.
- W2950961818 hasRelatedWork W1976890066 @default.
- W2950961818 hasRelatedWork W2024769658 @default.
- W2950961818 hasRelatedWork W2036298677 @default.
- W2950961818 hasRelatedWork W2554607852 @default.
- W2950961818 hasRelatedWork W2563182657 @default.
- W2950961818 hasRelatedWork W2791349326 @default.
- W2950961818 hasRelatedWork W2950102401 @default.
- W2950961818 hasRelatedWork W2950446527 @default.
- W2950961818 hasRelatedWork W2950716696 @default.
- W2950961818 hasRelatedWork W2963551201 @default.
- W2950961818 hasRelatedWork W2964026705 @default.
- W2950961818 hasRelatedWork W2990219750 @default.
- W2950961818 hasRelatedWork W3098818823 @default.
- W2950961818 hasRelatedWork W3099961020 @default.
- W2950961818 hasRelatedWork W3104038630 @default.
- W2950961818 hasRelatedWork W3139356434 @default.
- W2950961818 hasRelatedWork W3184692889 @default.
- W2950961818 hasRelatedWork W3188999970 @default.
- W2950961818 hasRelatedWork W3198971355 @default.
- W2950961818 isParatext "false" @default.
- W2950961818 isRetracted "false" @default.
- W2950961818 magId "2950961818" @default.
- W2950961818 workType "article" @default.