Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950970684> ?p ?o ?g. }
- W2950970684 abstract "As the development of deep neural networks, 3D object recognition is becoming increasingly popular in computer vision community. Many multi-view based methods are proposed to improve the category recognition accuracy. These approaches mainly rely on multi-view images which are rendered with the whole circumference. In real-world applications, however, 3D objects are mostly observed from partial viewpoints in a less range. Therefore, we propose a multi-view based 3D convolutional neural network, which takes only part of contiguous multi-view images as input and can still maintain high accuracy. Moreover, our model takes these view images as a joint variable to better learn spatially correlated features using 3D convolution and 3D max-pooling layers. Experimental results on ModelNet10 and ModelNet40 datasets show that our MV-C3D technique can achieve outstanding performance with multi-view images which are captured from partial angles with less range. The results on 3D rotated real image dataset MIRO further demonstrate that MV-C3D is more adaptable in real-world scenarios. The classification accuracy can be further improved with the increasing number of view images." @default.
- W2950970684 created "2019-06-27" @default.
- W2950970684 creator A5008255088 @default.
- W2950970684 creator A5008659449 @default.
- W2950970684 creator A5016704080 @default.
- W2950970684 creator A5047511618 @default.
- W2950970684 date "2019-06-15" @default.
- W2950970684 modified "2023-10-18" @default.
- W2950970684 title "MV-C3D: A Spatial Correlated Multi-View 3D Convolutional Neural Networks" @default.
- W2950970684 cites W1482825550 @default.
- W2950970684 cites W1522301498 @default.
- W2950970684 cites W1522734439 @default.
- W2950970684 cites W1629010235 @default.
- W2950970684 cites W1644641054 @default.
- W2950970684 cites W1686810756 @default.
- W2950970684 cites W1849277567 @default.
- W2950970684 cites W1920022804 @default.
- W2950970684 cites W1983364832 @default.
- W2950970684 cites W1994002998 @default.
- W2950970684 cites W2108598243 @default.
- W2950970684 cites W2122585444 @default.
- W2950970684 cites W2160643963 @default.
- W2950970684 cites W2211722331 @default.
- W2950970684 cites W2336098239 @default.
- W2950970684 cites W2338318698 @default.
- W2950970684 cites W2342223463 @default.
- W2950970684 cites W2344942246 @default.
- W2950970684 cites W2402144811 @default.
- W2950970684 cites W24089286 @default.
- W2950970684 cites W2504204199 @default.
- W2950970684 cites W2546066744 @default.
- W2950970684 cites W2555254696 @default.
- W2950970684 cites W2560609797 @default.
- W2950970684 cites W2578436806 @default.
- W2950970684 cites W2582398519 @default.
- W2950970684 cites W2586697881 @default.
- W2950970684 cites W2618136105 @default.
- W2950970684 cites W2737248315 @default.
- W2950970684 cites W2767106145 @default.
- W2950970684 cites W2769284350 @default.
- W2950970684 cites W2778352504 @default.
- W2950970684 cites W2789440825 @default.
- W2950970684 cites W2794206172 @default.
- W2950970684 cites W2799162093 @default.
- W2950970684 cites W2806244818 @default.
- W2950970684 cites W2890018557 @default.
- W2950970684 cites W2893477965 @default.
- W2950970684 cites W2901420404 @default.
- W2950970684 cites W2902333684 @default.
- W2950970684 cites W2903712458 @default.
- W2950970684 cites W2962731536 @default.
- W2950970684 cites W2962889053 @default.
- W2950970684 cites W2963035165 @default.
- W2950970684 cites W2963121255 @default.
- W2950970684 cites W2963420686 @default.
- W2950970684 cites W2963530975 @default.
- W2950970684 cites W2963719584 @default.
- W2950970684 cites W2964027736 @default.
- W2950970684 cites W2964342398 @default.
- W2950970684 cites W3101921002 @default.
- W2950970684 doi "https://doi.org/10.48550/arxiv.1906.06538" @default.
- W2950970684 hasPublicationYear "2019" @default.
- W2950970684 type Work @default.
- W2950970684 sameAs 2950970684 @default.
- W2950970684 citedByCount "0" @default.
- W2950970684 crossrefType "posted-content" @default.
- W2950970684 hasAuthorship W2950970684A5008255088 @default.
- W2950970684 hasAuthorship W2950970684A5008659449 @default.
- W2950970684 hasAuthorship W2950970684A5016704080 @default.
- W2950970684 hasAuthorship W2950970684A5047511618 @default.
- W2950970684 hasBestOaLocation W29509706841 @default.
- W2950970684 hasConcept C108583219 @default.
- W2950970684 hasConcept C115961682 @default.
- W2950970684 hasConcept C142362112 @default.
- W2950970684 hasConcept C153180895 @default.
- W2950970684 hasConcept C153349607 @default.
- W2950970684 hasConcept C154945302 @default.
- W2950970684 hasConcept C159985019 @default.
- W2950970684 hasConcept C192562407 @default.
- W2950970684 hasConcept C204323151 @default.
- W2950970684 hasConcept C2776035091 @default.
- W2950970684 hasConcept C2781238097 @default.
- W2950970684 hasConcept C31972630 @default.
- W2950970684 hasConcept C41008148 @default.
- W2950970684 hasConcept C45347329 @default.
- W2950970684 hasConcept C50644808 @default.
- W2950970684 hasConcept C70437156 @default.
- W2950970684 hasConcept C81363708 @default.
- W2950970684 hasConceptScore W2950970684C108583219 @default.
- W2950970684 hasConceptScore W2950970684C115961682 @default.
- W2950970684 hasConceptScore W2950970684C142362112 @default.
- W2950970684 hasConceptScore W2950970684C153180895 @default.
- W2950970684 hasConceptScore W2950970684C153349607 @default.
- W2950970684 hasConceptScore W2950970684C154945302 @default.
- W2950970684 hasConceptScore W2950970684C159985019 @default.
- W2950970684 hasConceptScore W2950970684C192562407 @default.
- W2950970684 hasConceptScore W2950970684C204323151 @default.
- W2950970684 hasConceptScore W2950970684C2776035091 @default.
- W2950970684 hasConceptScore W2950970684C2781238097 @default.
- W2950970684 hasConceptScore W2950970684C31972630 @default.