Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950991046> ?p ?o ?g. }
- W2950991046 abstract "The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order $muin (0,1)$ to compute that of any order $k+mu$ with integer $kge 0,$ while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order $muin (0,1).$ Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at interior JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, are essential for our algorithm development." @default.
- W2950991046 created "2019-06-27" @default.
- W2950991046 creator A5047433330 @default.
- W2950991046 creator A5059214587 @default.
- W2950991046 creator A5071083313 @default.
- W2950991046 date "2015-03-26" @default.
- W2950991046 modified "2023-09-23" @default.
- W2950991046 title "Well-Conditioned Fractional Collocation Methods Using Fractional Birkhoff Interpolation Basis" @default.
- W2950991046 cites W1244770280 @default.
- W2950991046 cites W1506933769 @default.
- W2950991046 cites W1975742941 @default.
- W2950991046 cites W1985748845 @default.
- W2950991046 cites W1988571032 @default.
- W2950991046 cites W2004467399 @default.
- W2950991046 cites W2009456713 @default.
- W2950991046 cites W2019689641 @default.
- W2950991046 cites W2023988191 @default.
- W2950991046 cites W2031567600 @default.
- W2950991046 cites W2039707205 @default.
- W2950991046 cites W2044934592 @default.
- W2950991046 cites W2048805000 @default.
- W2950991046 cites W2052169332 @default.
- W2950991046 cites W2065254635 @default.
- W2950991046 cites W2075474560 @default.
- W2950991046 cites W2086553043 @default.
- W2950991046 cites W2110504259 @default.
- W2950991046 cites W2118288723 @default.
- W2950991046 cites W2118835801 @default.
- W2950991046 cites W2127684492 @default.
- W2950991046 cites W2141494273 @default.
- W2950991046 cites W2142758723 @default.
- W2950991046 cites W2158575547 @default.
- W2950991046 cites W2963160544 @default.
- W2950991046 cites W3104584423 @default.
- W2950991046 cites W640428934 @default.
- W2950991046 doi "https://doi.org/10.48550/arxiv.1503.07632" @default.
- W2950991046 hasPublicationYear "2015" @default.
- W2950991046 type Work @default.
- W2950991046 sameAs 2950991046 @default.
- W2950991046 citedByCount "3" @default.
- W2950991046 countsByYear W29509910462015 @default.
- W2950991046 countsByYear W29509910462020 @default.
- W2950991046 crossrefType "posted-content" @default.
- W2950991046 hasAuthorship W2950991046A5047433330 @default.
- W2950991046 hasAuthorship W2950991046A5059214587 @default.
- W2950991046 hasAuthorship W2950991046A5071083313 @default.
- W2950991046 hasBestOaLocation W29509910461 @default.
- W2950991046 hasConcept C106487976 @default.
- W2950991046 hasConcept C119857082 @default.
- W2950991046 hasConcept C121684516 @default.
- W2950991046 hasConcept C12426560 @default.
- W2950991046 hasConcept C126255220 @default.
- W2950991046 hasConcept C134306372 @default.
- W2950991046 hasConcept C137800194 @default.
- W2950991046 hasConcept C154249771 @default.
- W2950991046 hasConcept C159985019 @default.
- W2950991046 hasConcept C192562407 @default.
- W2950991046 hasConcept C2126413 @default.
- W2950991046 hasConcept C2524010 @default.
- W2950991046 hasConcept C2778770139 @default.
- W2950991046 hasConcept C28826006 @default.
- W2950991046 hasConcept C33923547 @default.
- W2950991046 hasConcept C41008148 @default.
- W2950991046 hasConcept C502989409 @default.
- W2950991046 hasConcept C51544822 @default.
- W2950991046 hasConcept C5917680 @default.
- W2950991046 hasConcept C78045399 @default.
- W2950991046 hasConcept C80023036 @default.
- W2950991046 hasConcept C90119067 @default.
- W2950991046 hasConceptScore W2950991046C106487976 @default.
- W2950991046 hasConceptScore W2950991046C119857082 @default.
- W2950991046 hasConceptScore W2950991046C121684516 @default.
- W2950991046 hasConceptScore W2950991046C12426560 @default.
- W2950991046 hasConceptScore W2950991046C126255220 @default.
- W2950991046 hasConceptScore W2950991046C134306372 @default.
- W2950991046 hasConceptScore W2950991046C137800194 @default.
- W2950991046 hasConceptScore W2950991046C154249771 @default.
- W2950991046 hasConceptScore W2950991046C159985019 @default.
- W2950991046 hasConceptScore W2950991046C192562407 @default.
- W2950991046 hasConceptScore W2950991046C2126413 @default.
- W2950991046 hasConceptScore W2950991046C2524010 @default.
- W2950991046 hasConceptScore W2950991046C2778770139 @default.
- W2950991046 hasConceptScore W2950991046C28826006 @default.
- W2950991046 hasConceptScore W2950991046C33923547 @default.
- W2950991046 hasConceptScore W2950991046C41008148 @default.
- W2950991046 hasConceptScore W2950991046C502989409 @default.
- W2950991046 hasConceptScore W2950991046C51544822 @default.
- W2950991046 hasConceptScore W2950991046C5917680 @default.
- W2950991046 hasConceptScore W2950991046C78045399 @default.
- W2950991046 hasConceptScore W2950991046C80023036 @default.
- W2950991046 hasConceptScore W2950991046C90119067 @default.
- W2950991046 hasLocation W29509910461 @default.
- W2950991046 hasOpenAccess W2950991046 @default.
- W2950991046 hasPrimaryLocation W29509910461 @default.
- W2950991046 hasRelatedWork W26441480 @default.
- W2950991046 hasRelatedWork W27617868 @default.
- W2950991046 hasRelatedWork W28631575 @default.
- W2950991046 hasRelatedWork W32014465 @default.
- W2950991046 hasRelatedWork W32086764 @default.
- W2950991046 hasRelatedWork W38479546 @default.