Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951004068> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2951004068 abstract "The term strong approximation is used to describe phenomena where an arithmetic group as well as all of its Zariski dense subgroups have a large image in the congruence quotients. We exhibit analogues of such phenomena in a probabilistic, rather than arithmetic, setting. Let T be the binary rooted tree, Aut(T) its automorphism group. To a given m-tuple a = {a_1,a_2,...,a_m} in Aut(T), we associate a tower of 2m-regular Schreier graphs ...X_n-->X_{n-1}-->...-->X_0. The vertices of X_n are the n^{th} level of the tree and two such are connected by an edge if a generator takes one to the other. When {a_i} are independent Haar-random elements of Aut(T) we retrieve the standard model for iterated random 2-lifts studied, for example by Bilu-Linial. If w={w_1,w_2,...,w_l} are words in the free group F_m, the random substitutions w(a) := {w_1(a),...,w_l(a)} give rise to new models for random towers of 2l-regular graphs: ...Y_n-->Y_{n-1}-->...-->Y_0. With the above notation, the following hold almost surely, for every non cyclic subgroup D in F_m: (i) the graphs $Y_n$ have a bounded number of connected components, (ii) these connected components form a family of expander graphs, (iii) the closure of D has positive Hausdorff dimension as a subgroup of the (metric) group Aut(T)." @default.
- W2951004068 created "2019-06-27" @default.
- W2951004068 creator A5038430425 @default.
- W2951004068 date "2009-05-01" @default.
- W2951004068 modified "2023-09-27" @default.
- W2951004068 title "Strong approximation in random towers of graphs" @default.
- W2951004068 cites W1556156972 @default.
- W2951004068 cites W1608769247 @default.
- W2951004068 cites W1971907125 @default.
- W2951004068 cites W1974893148 @default.
- W2951004068 cites W1976391120 @default.
- W2951004068 cites W2001517729 @default.
- W2951004068 cites W2057980241 @default.
- W2951004068 cites W2069084184 @default.
- W2951004068 cites W2073039745 @default.
- W2951004068 cites W2094088121 @default.
- W2951004068 cites W2114619383 @default.
- W2951004068 hasPublicationYear "2009" @default.
- W2951004068 type Work @default.
- W2951004068 sameAs 2951004068 @default.
- W2951004068 citedByCount "0" @default.
- W2951004068 crossrefType "posted-content" @default.
- W2951004068 hasAuthorship W2951004068A5038430425 @default.
- W2951004068 hasConcept C102192266 @default.
- W2951004068 hasConcept C114614502 @default.
- W2951004068 hasConcept C118615104 @default.
- W2951004068 hasConcept C118712358 @default.
- W2951004068 hasConcept C132525143 @default.
- W2951004068 hasConcept C134306372 @default.
- W2951004068 hasConcept C140479938 @default.
- W2951004068 hasConcept C160446614 @default.
- W2951004068 hasConcept C178790620 @default.
- W2951004068 hasConcept C185592680 @default.
- W2951004068 hasConcept C2781311116 @default.
- W2951004068 hasConcept C33923547 @default.
- W2951004068 hasConcept C34388435 @default.
- W2951004068 hasConcept C47458327 @default.
- W2951004068 hasConcept C60933471 @default.
- W2951004068 hasConceptScore W2951004068C102192266 @default.
- W2951004068 hasConceptScore W2951004068C114614502 @default.
- W2951004068 hasConceptScore W2951004068C118615104 @default.
- W2951004068 hasConceptScore W2951004068C118712358 @default.
- W2951004068 hasConceptScore W2951004068C132525143 @default.
- W2951004068 hasConceptScore W2951004068C134306372 @default.
- W2951004068 hasConceptScore W2951004068C140479938 @default.
- W2951004068 hasConceptScore W2951004068C160446614 @default.
- W2951004068 hasConceptScore W2951004068C178790620 @default.
- W2951004068 hasConceptScore W2951004068C185592680 @default.
- W2951004068 hasConceptScore W2951004068C2781311116 @default.
- W2951004068 hasConceptScore W2951004068C33923547 @default.
- W2951004068 hasConceptScore W2951004068C34388435 @default.
- W2951004068 hasConceptScore W2951004068C47458327 @default.
- W2951004068 hasConceptScore W2951004068C60933471 @default.
- W2951004068 hasLocation W29510040681 @default.
- W2951004068 hasOpenAccess W2951004068 @default.
- W2951004068 hasPrimaryLocation W29510040681 @default.
- W2951004068 hasRelatedWork W2003044721 @default.
- W2951004068 hasRelatedWork W2007969418 @default.
- W2951004068 hasRelatedWork W2053290558 @default.
- W2951004068 hasRelatedWork W2068790504 @default.
- W2951004068 hasRelatedWork W2073527169 @default.
- W2951004068 hasRelatedWork W2082038480 @default.
- W2951004068 hasRelatedWork W2095271257 @default.
- W2951004068 hasRelatedWork W2134383028 @default.
- W2951004068 hasRelatedWork W2301378683 @default.
- W2951004068 hasRelatedWork W2337814661 @default.
- W2951004068 hasRelatedWork W2550681878 @default.
- W2951004068 hasRelatedWork W2762248185 @default.
- W2951004068 hasRelatedWork W2790744337 @default.
- W2951004068 hasRelatedWork W2793968149 @default.
- W2951004068 hasRelatedWork W2797148876 @default.
- W2951004068 hasRelatedWork W2951968296 @default.
- W2951004068 hasRelatedWork W2969333175 @default.
- W2951004068 hasRelatedWork W3100406473 @default.
- W2951004068 hasRelatedWork W2522114319 @default.
- W2951004068 hasRelatedWork W2952300268 @default.
- W2951004068 isParatext "false" @default.
- W2951004068 isRetracted "false" @default.
- W2951004068 magId "2951004068" @default.
- W2951004068 workType "article" @default.