Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951007999> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2951007999 abstract "This paper evaluates a thermodynamic ice crystal icing model that has been previously presented to describe the possible mechanisms of icing within the core of a turbofan jet engine. The model functions between two distinct ice accretions based on a surface energy balance: freeze-dominated icing and melt-dominated icing. Freeze-dominated icing occurs when liquid water (from melted ice crystals) freezes and accretes on a surface along with the existing ice of the impinging water and ice mass. This freeze-dominated icing is characterized as having strong adhesion to the surface. The amount of ice accretion is partially dictated by a freeze fraction, which is the fraction of impinging liquid water that freezes. Melt-dominated icing occurs as unmelted ice on a surface accumulates. This melt-dominated icing is characterized by weakly bonded surface adhesion. The amount of ice accumulation is partially dictated by a melt fraction, which is the fraction of impinging ice crystals that melts. Experimentally observed ice growth rates suggest that only a small fraction of the impinging ice remains on the surface, implying a mass loss mechanism such as splash, runback, bounce, or erosion. The fraction of mass loss must be determined in conjunction with the fraction of freezing liquid water or fraction of melting ice on an icing surface for a given ice growth rate. This mass loss parameter, however, along with the freeze fraction and melt fraction, are the only experimental parameters that are currently not measured directly. Using icing growth rates from ice crystal icing experiments, a methodology that has been previously proposed is used to determine these unknown parameters. This work takes ice accretion data from tests conducted by the National Aeronautics and Space Administration (NASA) at the Glenn Research Center in 2018 that examined the fundamental physics of ice crystal icing. This paper continues evaluation of the thermodynamic model from a previous effort, with additions to the model that account for sub-freezing temperatures that have been observed at the leading edge of the airfoil during icing. The predicted temperatures were generally in good agreement with measured temperatures. Other key findings include the total wet-bulb temperature being a good first order indicator of whether icing is freeze-dominated (sub-freezing values) or melt-dominated (above freezing). Maximum sticking efficiency values, the fraction of impinging mass that adheres to a surface, was calculated to be about 0.2, and retained this maximum value for a range of melt ratios (0.3 to 0.65 and possibly higher), which is defined as the ratio of liquid water content to total water content. Higher air velocities reduced the maximum sticking efficiency and shifted the icing regime to higher melt ratio values. Finally, the leading edge ice accretion angle was found to be related to ice growth (lower growth rates for smaller angles) and melt ratio (smaller melt ratios resulted in smaller angles, likely due to erosion effects)." @default.
- W2951007999 created "2019-06-27" @default.
- W2951007999 creator A5008649373 @default.
- W2951007999 creator A5047006412 @default.
- W2951007999 creator A5057819887 @default.
- W2951007999 date "2019-06-10" @default.
- W2951007999 modified "2023-09-24" @default.
- W2951007999 title "Analysis of Experimental Ice Accretion Data and Assessment of a Thermodynamic Model during Ice Crystal Icing" @default.
- W2951007999 cites W1544473413 @default.
- W2951007999 cites W1874486452 @default.
- W2951007999 cites W2027059871 @default.
- W2951007999 cites W2058053785 @default.
- W2951007999 cites W2110261132 @default.
- W2951007999 cites W2143194706 @default.
- W2951007999 cites W2152157241 @default.
- W2951007999 cites W2314021481 @default.
- W2951007999 cites W2315478304 @default.
- W2951007999 cites W2324466374 @default.
- W2951007999 cites W2332880164 @default.
- W2951007999 cites W2419220728 @default.
- W2951007999 cites W2620587814 @default.
- W2951007999 cites W2620864871 @default.
- W2951007999 cites W2620911158 @default.
- W2951007999 cites W2793736167 @default.
- W2951007999 cites W2810001830 @default.
- W2951007999 cites W2810294592 @default.
- W2951007999 cites W2811435195 @default.
- W2951007999 cites W2942092257 @default.
- W2951007999 cites W2951976784 @default.
- W2951007999 cites W3174944299 @default.
- W2951007999 cites W3247886 @default.
- W2951007999 cites W2810883600 @default.
- W2951007999 doi "https://doi.org/10.4271/2019-01-2016" @default.
- W2951007999 hasPublicationYear "2019" @default.
- W2951007999 type Work @default.
- W2951007999 sameAs 2951007999 @default.
- W2951007999 citedByCount "11" @default.
- W2951007999 countsByYear W29510079992019 @default.
- W2951007999 countsByYear W29510079992020 @default.
- W2951007999 countsByYear W29510079992021 @default.
- W2951007999 countsByYear W29510079992023 @default.
- W2951007999 crossrefType "proceedings-article" @default.
- W2951007999 hasAuthorship W2951007999A5008649373 @default.
- W2951007999 hasAuthorship W2951007999A5047006412 @default.
- W2951007999 hasAuthorship W2951007999A5057819887 @default.
- W2951007999 hasBestOaLocation W29510079992 @default.
- W2951007999 hasConcept C121332964 @default.
- W2951007999 hasConcept C125388846 @default.
- W2951007999 hasConcept C126603772 @default.
- W2951007999 hasConcept C127313418 @default.
- W2951007999 hasConcept C136894858 @default.
- W2951007999 hasConcept C149767477 @default.
- W2951007999 hasConcept C153294291 @default.
- W2951007999 hasConcept C197435368 @default.
- W2951007999 hasConcept C2776401274 @default.
- W2951007999 hasConcept C2781439067 @default.
- W2951007999 hasConcept C2992878202 @default.
- W2951007999 hasConcept C39432304 @default.
- W2951007999 hasConcept C44870925 @default.
- W2951007999 hasConcept C49204034 @default.
- W2951007999 hasConcept C91586092 @default.
- W2951007999 hasConceptScore W2951007999C121332964 @default.
- W2951007999 hasConceptScore W2951007999C125388846 @default.
- W2951007999 hasConceptScore W2951007999C126603772 @default.
- W2951007999 hasConceptScore W2951007999C127313418 @default.
- W2951007999 hasConceptScore W2951007999C136894858 @default.
- W2951007999 hasConceptScore W2951007999C149767477 @default.
- W2951007999 hasConceptScore W2951007999C153294291 @default.
- W2951007999 hasConceptScore W2951007999C197435368 @default.
- W2951007999 hasConceptScore W2951007999C2776401274 @default.
- W2951007999 hasConceptScore W2951007999C2781439067 @default.
- W2951007999 hasConceptScore W2951007999C2992878202 @default.
- W2951007999 hasConceptScore W2951007999C39432304 @default.
- W2951007999 hasConceptScore W2951007999C44870925 @default.
- W2951007999 hasConceptScore W2951007999C49204034 @default.
- W2951007999 hasConceptScore W2951007999C91586092 @default.
- W2951007999 hasLocation W29510079991 @default.
- W2951007999 hasLocation W29510079992 @default.
- W2951007999 hasOpenAccess W2951007999 @default.
- W2951007999 hasPrimaryLocation W29510079991 @default.
- W2951007999 hasRelatedWork W2016936341 @default.
- W2951007999 hasRelatedWork W2373937794 @default.
- W2951007999 hasRelatedWork W2532901919 @default.
- W2951007999 hasRelatedWork W262492902 @default.
- W2951007999 hasRelatedWork W2918054234 @default.
- W2951007999 hasRelatedWork W4200081715 @default.
- W2951007999 hasRelatedWork W4206026911 @default.
- W2951007999 hasRelatedWork W4283012943 @default.
- W2951007999 hasRelatedWork W4283215369 @default.
- W2951007999 hasRelatedWork W4313648240 @default.
- W2951007999 isParatext "false" @default.
- W2951007999 isRetracted "false" @default.
- W2951007999 magId "2951007999" @default.
- W2951007999 workType "article" @default.