Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951008061> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2951008061 endingPage "138" @default.
- W2951008061 startingPage "127" @default.
- W2951008061 abstract "In facial expression identification classification and lower processing times are key in choosing the algorithms to use in the facial detection, preprocessing, feature extraction or classification step. Facial expression recognition is based on deep learning, feature and holistic algorithms. Feature based algorithms like local binary patterns, local directional patterns (LDP) extract features from various facial components like nose, mouth or ears into a histogram. Deep learning involves using convolutional neural networks for image analysis with several hidden layers as opposed to artificial neural or shallow networks. The most popular models are AlexNet, VGG-Face and GoogleNet. The study evaluates computational accuracy and efficiency of deep learning algorithms and compares them to local feature based algorithms. The FER2013, Yale Faces, AT&T Database of Faces, JAFFE and CK+ datasets were used for analysis. Popular frameworks deep learning frameworks called Keras and Tensorflow backends are used to classify data and give better accuracy than a variant of local binary patterns. The processing time is shorter for feature based algorithms than the deep learning algorithms. To improve time on the deep learning approaches the study used pre-trained models to achieve greater accuracy with low execution times as well. A combination of preprocessed multi block binary patterns, PCA, multilayer perceptron, support vector machines and extra trees classifier gave competitive results to the superior established convolutional network for small datasets within a percentage range. Preprocessing used canny edge detection and histogram equalization." @default.
- W2951008061 created "2019-06-27" @default.
- W2951008061 creator A5040730797 @default.
- W2951008061 date "2019-01-01" @default.
- W2951008061 modified "2023-10-16" @default.
- W2951008061 title "A Review of Local Feature Algorithms and Deep Learning Approaches in Facial Expression Recognition with Tensorflow and Keras" @default.
- W2951008061 cites W1480583224 @default.
- W2951008061 cites W1825459403 @default.
- W2951008061 cites W1973859001 @default.
- W2951008061 cites W2012485643 @default.
- W2951008061 cites W2047339223 @default.
- W2951008061 cites W2244142460 @default.
- W2951008061 cites W2251198138 @default.
- W2951008061 cites W2318596871 @default.
- W2951008061 cites W2751430965 @default.
- W2951008061 cites W2787709995 @default.
- W2951008061 cites W4292333043 @default.
- W2951008061 cites W4293768955 @default.
- W2951008061 doi "https://doi.org/10.1007/978-3-030-21077-9_12" @default.
- W2951008061 hasPublicationYear "2019" @default.
- W2951008061 type Work @default.
- W2951008061 sameAs 2951008061 @default.
- W2951008061 citedByCount "0" @default.
- W2951008061 crossrefType "book-chapter" @default.
- W2951008061 hasAuthorship W2951008061A5040730797 @default.
- W2951008061 hasBestOaLocation W29510080611 @default.
- W2951008061 hasConcept C108583219 @default.
- W2951008061 hasConcept C115961682 @default.
- W2951008061 hasConcept C119857082 @default.
- W2951008061 hasConcept C12267149 @default.
- W2951008061 hasConcept C138885662 @default.
- W2951008061 hasConcept C153180895 @default.
- W2951008061 hasConcept C154945302 @default.
- W2951008061 hasConcept C17426736 @default.
- W2951008061 hasConcept C2776401178 @default.
- W2951008061 hasConcept C34736171 @default.
- W2951008061 hasConcept C41008148 @default.
- W2951008061 hasConcept C41895202 @default.
- W2951008061 hasConcept C50644808 @default.
- W2951008061 hasConcept C52622490 @default.
- W2951008061 hasConcept C53533937 @default.
- W2951008061 hasConcept C60908668 @default.
- W2951008061 hasConcept C81363708 @default.
- W2951008061 hasConcept C87335442 @default.
- W2951008061 hasConcept C95623464 @default.
- W2951008061 hasConceptScore W2951008061C108583219 @default.
- W2951008061 hasConceptScore W2951008061C115961682 @default.
- W2951008061 hasConceptScore W2951008061C119857082 @default.
- W2951008061 hasConceptScore W2951008061C12267149 @default.
- W2951008061 hasConceptScore W2951008061C138885662 @default.
- W2951008061 hasConceptScore W2951008061C153180895 @default.
- W2951008061 hasConceptScore W2951008061C154945302 @default.
- W2951008061 hasConceptScore W2951008061C17426736 @default.
- W2951008061 hasConceptScore W2951008061C2776401178 @default.
- W2951008061 hasConceptScore W2951008061C34736171 @default.
- W2951008061 hasConceptScore W2951008061C41008148 @default.
- W2951008061 hasConceptScore W2951008061C41895202 @default.
- W2951008061 hasConceptScore W2951008061C50644808 @default.
- W2951008061 hasConceptScore W2951008061C52622490 @default.
- W2951008061 hasConceptScore W2951008061C53533937 @default.
- W2951008061 hasConceptScore W2951008061C60908668 @default.
- W2951008061 hasConceptScore W2951008061C81363708 @default.
- W2951008061 hasConceptScore W2951008061C87335442 @default.
- W2951008061 hasConceptScore W2951008061C95623464 @default.
- W2951008061 hasLocation W29510080611 @default.
- W2951008061 hasOpenAccess W2951008061 @default.
- W2951008061 hasPrimaryLocation W29510080611 @default.
- W2951008061 hasRelatedWork W1780126258 @default.
- W2951008061 hasRelatedWork W2085553065 @default.
- W2951008061 hasRelatedWork W2087874231 @default.
- W2951008061 hasRelatedWork W2188464267 @default.
- W2951008061 hasRelatedWork W2550539038 @default.
- W2951008061 hasRelatedWork W2752642517 @default.
- W2951008061 hasRelatedWork W2999548501 @default.
- W2951008061 hasRelatedWork W3209358399 @default.
- W2951008061 hasRelatedWork W4253160043 @default.
- W2951008061 hasRelatedWork W4312591853 @default.
- W2951008061 isParatext "false" @default.
- W2951008061 isRetracted "false" @default.
- W2951008061 magId "2951008061" @default.
- W2951008061 workType "book-chapter" @default.