Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951032685> ?p ?o ?g. }
- W2951032685 endingPage "404" @default.
- W2951032685 startingPage "391" @default.
- W2951032685 abstract "We propose a patch-based singular value shrinkage method for diffusion magnetic resonance image estimation targeted at low signal to noise ratio and accelerated acquisitions. It operates on the complex data resulting from a sensitivity encoding reconstruction, where asymptotically optimal signal recovery guarantees can be attained by modeling the noise propagation in the reconstruction and subsequently simulating or calculating the limit singular value spectrum. Simple strategies are presented to deal with phase inconsistencies and optimize patch construction. The pertinence of our contributions is quantitatively validated on synthetic data, an in vivo adult example, and challenging neonatal and fetal cohorts. Our methodology is compared with related approaches, which generally operate on magnitude-only data and use data-based noise level estimation and singular value truncation. Visual examples are provided to illustrate effectiveness in generating denoised and debiased diffusion estimates with well preserved spatial and diffusion detail." @default.
- W2951032685 created "2019-06-27" @default.
- W2951032685 creator A5007821573 @default.
- W2951032685 creator A5045624234 @default.
- W2951032685 creator A5053114506 @default.
- W2951032685 creator A5057304825 @default.
- W2951032685 creator A5085446806 @default.
- W2951032685 date "2019-10-01" @default.
- W2951032685 modified "2023-10-14" @default.
- W2951032685 title "Complex diffusion-weighted image estimation via matrix recovery under general noise models" @default.
- W2951032685 cites W1520752838 @default.
- W2951032685 cites W1661703005 @default.
- W2951032685 cites W1799381395 @default.
- W2951032685 cites W1917038632 @default.
- W2951032685 cites W1922398241 @default.
- W2951032685 cites W1969097180 @default.
- W2951032685 cites W1973207753 @default.
- W2951032685 cites W1986094618 @default.
- W2951032685 cites W1988597341 @default.
- W2951032685 cites W2017304912 @default.
- W2951032685 cites W2023173554 @default.
- W2951032685 cites W2032038095 @default.
- W2951032685 cites W2036041259 @default.
- W2951032685 cites W2047592445 @default.
- W2951032685 cites W2056370875 @default.
- W2951032685 cites W2059556731 @default.
- W2951032685 cites W2059784307 @default.
- W2951032685 cites W2060581589 @default.
- W2951032685 cites W2061027870 @default.
- W2951032685 cites W2069494733 @default.
- W2951032685 cites W2081859730 @default.
- W2951032685 cites W2084086452 @default.
- W2951032685 cites W2106084579 @default.
- W2951032685 cites W2106263593 @default.
- W2951032685 cites W2118621786 @default.
- W2951032685 cites W2120761181 @default.
- W2951032685 cites W2132657058 @default.
- W2951032685 cites W2133665775 @default.
- W2951032685 cites W2144536070 @default.
- W2951032685 cites W2146437028 @default.
- W2951032685 cites W2149337534 @default.
- W2951032685 cites W2151354228 @default.
- W2951032685 cites W2158495596 @default.
- W2951032685 cites W2166635950 @default.
- W2951032685 cites W2177917702 @default.
- W2951032685 cites W2271406867 @default.
- W2951032685 cites W2298552625 @default.
- W2951032685 cites W2312515137 @default.
- W2951032685 cites W2346371780 @default.
- W2951032685 cites W2508982726 @default.
- W2951032685 cites W2606780891 @default.
- W2951032685 cites W2620379761 @default.
- W2951032685 cites W2962946304 @default.
- W2951032685 cites W2963780177 @default.
- W2951032685 cites W2964044082 @default.
- W2951032685 cites W2970898057 @default.
- W2951032685 cites W3103793889 @default.
- W2951032685 cites W4249760698 @default.
- W2951032685 doi "https://doi.org/10.1016/j.neuroimage.2019.06.039" @default.
- W2951032685 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6711461" @default.
- W2951032685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31226495" @default.
- W2951032685 hasPublicationYear "2019" @default.
- W2951032685 type Work @default.
- W2951032685 sameAs 2951032685 @default.
- W2951032685 citedByCount "151" @default.
- W2951032685 countsByYear W29510326852020 @default.
- W2951032685 countsByYear W29510326852021 @default.
- W2951032685 countsByYear W29510326852022 @default.
- W2951032685 countsByYear W29510326852023 @default.
- W2951032685 crossrefType "journal-article" @default.
- W2951032685 hasAuthorship W2951032685A5007821573 @default.
- W2951032685 hasAuthorship W2951032685A5045624234 @default.
- W2951032685 hasAuthorship W2951032685A5053114506 @default.
- W2951032685 hasAuthorship W2951032685A5057304825 @default.
- W2951032685 hasAuthorship W2951032685A5085446806 @default.
- W2951032685 hasBestOaLocation W29510326851 @default.
- W2951032685 hasConcept C106195933 @default.
- W2951032685 hasConcept C109282560 @default.
- W2951032685 hasConcept C11413529 @default.
- W2951032685 hasConcept C115961682 @default.
- W2951032685 hasConcept C119857082 @default.
- W2951032685 hasConcept C121332964 @default.
- W2951032685 hasConcept C126255220 @default.
- W2951032685 hasConcept C127413603 @default.
- W2951032685 hasConcept C154945302 @default.
- W2951032685 hasConcept C158693339 @default.
- W2951032685 hasConcept C160920958 @default.
- W2951032685 hasConcept C199360897 @default.
- W2951032685 hasConcept C21200559 @default.
- W2951032685 hasConcept C22789450 @default.
- W2951032685 hasConcept C24326235 @default.
- W2951032685 hasConcept C2779843651 @default.
- W2951032685 hasConcept C33923547 @default.
- W2951032685 hasConcept C41008148 @default.
- W2951032685 hasConcept C62520636 @default.
- W2951032685 hasConcept C69357855 @default.
- W2951032685 hasConcept C97355855 @default.
- W2951032685 hasConcept C99498987 @default.