Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951058877> ?p ?o ?g. }
- W2951058877 endingPage "102057" @default.
- W2951058877 startingPage "102057" @default.
- W2951058877 abstract "Accurate predictions about future events is essential in many areas, one of them being the Tourism Industry. Usually, cities and countries invest a huge amount of money for planning and preparation in order to welcome (and profit from) tourists. The success of many businesses depends largely or totally on the state of tourism demand. Estimation of tourism demand can be helpful to business planners in reducing the risk of decisions regarding the future since tourism products are, generally speaking, perishable (gone if not used). Prior studies in this domain focus on forecasting for a whole country and not for fine-grained areas within a country (e.g., specific touristic attractions) mainly because of lack of data. Our article tackles exactly this issue. With the rapid popularity growth of social media applications, each year more people interact within online resources to plan and comment on their trips. Motivated by such observation, we here suggest that accessible data in online social networks or travel websites, in addition to environmental data, can be used to support the inference of visitation count for either indoor or outdoor touristic attractions. To test our hypothesis we analyze visitation counts, environmental features and social media data related to 27 museums and galleries in U.K as well as 76 national parks in the U.S. Our experimental results reveal high accuracy levels (above 92%) for predicting tourism demand using features from both social media and environmental data. We also show that, for outdoor attractions, environmental features have better predictive power while the opposite occurs for indoor attractions. In any case, best results, in all scenarios, are obtained when using both types of features jointly. Finally, we perform a detailed failure analysis to inspect the cases in which the prediction results are not satisfactory." @default.
- W2951058877 created "2019-06-27" @default.
- W2951058877 creator A5006698733 @default.
- W2951058877 creator A5037898474 @default.
- W2951058877 creator A5041484427 @default.
- W2951058877 creator A5046370637 @default.
- W2951058877 creator A5084044470 @default.
- W2951058877 date "2020-03-01" @default.
- W2951058877 modified "2023-10-14" @default.
- W2951058877 title "Fine-grained tourism prediction: Impact of social and environmental features" @default.
- W2951058877 cites W1982657993 @default.
- W2951058877 cites W1983147111 @default.
- W2951058877 cites W1983925559 @default.
- W2951058877 cites W1992347171 @default.
- W2951058877 cites W2016210396 @default.
- W2951058877 cites W2017254898 @default.
- W2951058877 cites W2017375341 @default.
- W2951058877 cites W2029803196 @default.
- W2951058877 cites W2030387474 @default.
- W2951058877 cites W2037970810 @default.
- W2951058877 cites W2039693986 @default.
- W2951058877 cites W2039824374 @default.
- W2951058877 cites W2057488087 @default.
- W2951058877 cites W2068181924 @default.
- W2951058877 cites W2086276250 @default.
- W2951058877 cites W2086691529 @default.
- W2951058877 cites W2089607056 @default.
- W2951058877 cites W2091085232 @default.
- W2951058877 cites W2097883441 @default.
- W2951058877 cites W2102296015 @default.
- W2951058877 cites W2116976498 @default.
- W2951058877 cites W2126529030 @default.
- W2951058877 cites W2135035282 @default.
- W2951058877 cites W2140964565 @default.
- W2951058877 cites W2149723649 @default.
- W2951058877 cites W2166008665 @default.
- W2951058877 cites W2167658835 @default.
- W2951058877 cites W2171931041 @default.
- W2951058877 cites W2256966518 @default.
- W2951058877 cites W2324562510 @default.
- W2951058877 cites W2335216295 @default.
- W2951058877 cites W2341433849 @default.
- W2951058877 cites W2560592041 @default.
- W2951058877 cites W2567950342 @default.
- W2951058877 cites W2608460224 @default.
- W2951058877 cites W2611791389 @default.
- W2951058877 cites W2767084877 @default.
- W2951058877 cites W2790923627 @default.
- W2951058877 cites W4236145856 @default.
- W2951058877 cites W4246497475 @default.
- W2951058877 doi "https://doi.org/10.1016/j.ipm.2019.102057" @default.
- W2951058877 hasPublicationYear "2020" @default.
- W2951058877 type Work @default.
- W2951058877 sameAs 2951058877 @default.
- W2951058877 citedByCount "21" @default.
- W2951058877 countsByYear W29510588772020 @default.
- W2951058877 countsByYear W29510588772021 @default.
- W2951058877 countsByYear W29510588772022 @default.
- W2951058877 countsByYear W29510588772023 @default.
- W2951058877 crossrefType "journal-article" @default.
- W2951058877 hasAuthorship W2951058877A5006698733 @default.
- W2951058877 hasAuthorship W2951058877A5037898474 @default.
- W2951058877 hasAuthorship W2951058877A5041484427 @default.
- W2951058877 hasAuthorship W2951058877A5046370637 @default.
- W2951058877 hasAuthorship W2951058877A5084044470 @default.
- W2951058877 hasConcept C111472728 @default.
- W2951058877 hasConcept C136764020 @default.
- W2951058877 hasConcept C138885662 @default.
- W2951058877 hasConcept C144133560 @default.
- W2951058877 hasConcept C157085824 @default.
- W2951058877 hasConcept C162324750 @default.
- W2951058877 hasConcept C162853370 @default.
- W2951058877 hasConcept C166957645 @default.
- W2951058877 hasConcept C173608175 @default.
- W2951058877 hasConcept C175444787 @default.
- W2951058877 hasConcept C17744445 @default.
- W2951058877 hasConcept C181622380 @default.
- W2951058877 hasConcept C18918823 @default.
- W2951058877 hasConcept C199539241 @default.
- W2951058877 hasConcept C205649164 @default.
- W2951058877 hasConcept C2778136018 @default.
- W2951058877 hasConcept C2780586970 @default.
- W2951058877 hasConcept C41008148 @default.
- W2951058877 hasConcept C518677369 @default.
- W2951058877 hasConceptScore W2951058877C111472728 @default.
- W2951058877 hasConceptScore W2951058877C136764020 @default.
- W2951058877 hasConceptScore W2951058877C138885662 @default.
- W2951058877 hasConceptScore W2951058877C144133560 @default.
- W2951058877 hasConceptScore W2951058877C157085824 @default.
- W2951058877 hasConceptScore W2951058877C162324750 @default.
- W2951058877 hasConceptScore W2951058877C162853370 @default.
- W2951058877 hasConceptScore W2951058877C166957645 @default.
- W2951058877 hasConceptScore W2951058877C173608175 @default.
- W2951058877 hasConceptScore W2951058877C175444787 @default.
- W2951058877 hasConceptScore W2951058877C17744445 @default.
- W2951058877 hasConceptScore W2951058877C181622380 @default.
- W2951058877 hasConceptScore W2951058877C18918823 @default.
- W2951058877 hasConceptScore W2951058877C199539241 @default.