Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951093035> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2951093035 abstract "We define a new perverse sheaf, the comparison complex, naturally associated to any locally reduced complex analytic space $X$ on which the (shifted) constant sheaf $mathbb{Q}_X^bullet[dim X]$ is perverse. In the hypersurface case, this complex is isomorphic to the perverse eigenspace of the eigenvalue one for the Milnor monodromy action on the vanishing cycles; we also examine how the characteristic polar multiplicities of this complex behave in certain one-parameter families of deformations of hypersurfaces with codimension-one singularities, and generalize a classical formula for the Milnor number of a plane curve singularities in terms of double-points. In general, the vanishing of the cohomology sheaves of the comparison complex provide a criterion for determining if the normalization of the space X is a rational homology manifold. When the normalization is a rational homology manifold, we can also compute several terms in the weight filtration of the constant sheaf $mathbb{Q}_X^bullet[dim X]$ in those cases for which this perverse sheaf underlies a mixed Hodge module. In the surface case $V(f) subseteq C^3$, this produces a new numerical invariant, the weight zero part of the constant sheaf, which is a perverse sheaf concentrated on a single point. We then prove two special cases of a conjecture of Javier Fern'{a}ndez de Bobadilla for hypersurfaces with $1$-dimensional critical loci (Corollary 4.2.0.2 and Theorem 4.3.0.2). We do this via a new numerical invariant for such hypersurfaces, called the beta invariant, first defined and explored by the Massey in 2014. The beta invariant is an algebraically calculable invariant of the local ambient topological-type of the hypersurface, and the vanishing of the beta invariant is equivalent to the hypotheses of Bobadilla's conjecture. Bobadilla's Conjecture is related to a more well-known conjecture by L^{e} D~{u}ng Tr'{a}ng (conjref{conj:leconj}) regarding the equsingularity of parameterized surfaces in $C^3$." @default.
- W2951093035 created "2019-06-27" @default.
- W2951093035 creator A5060281945 @default.
- W2951093035 date "2021-05-10" @default.
- W2951093035 modified "2023-10-14" @default.
- W2951093035 title "Hypersurface normalizations and numerical invariants" @default.
- W2951093035 cites W1139114343 @default.
- W2951093035 cites W2012205791 @default.
- W2951093035 cites W2013186750 @default.
- W2951093035 cites W2021411374 @default.
- W2951093035 cites W2054993803 @default.
- W2951093035 cites W2070554137 @default.
- W2951093035 cites W2072204993 @default.
- W2951093035 cites W2124303587 @default.
- W2951093035 cites W2164048373 @default.
- W2951093035 cites W2229235972 @default.
- W2951093035 cites W2775167494 @default.
- W2951093035 cites W2964170959 @default.
- W2951093035 cites W608741895 @default.
- W2951093035 doi "https://doi.org/10.17760/d20316378" @default.
- W2951093035 hasPublicationYear "2021" @default.
- W2951093035 type Work @default.
- W2951093035 sameAs 2951093035 @default.
- W2951093035 citedByCount "0" @default.
- W2951093035 crossrefType "dissertation" @default.
- W2951093035 hasAuthorship W2951093035A5060281945 @default.
- W2951093035 hasBestOaLocation W29510930351 @default.
- W2951093035 hasConcept C104317684 @default.
- W2951093035 hasConcept C114410712 @default.
- W2951093035 hasConcept C12843 @default.
- W2951093035 hasConcept C134306372 @default.
- W2951093035 hasConcept C165525559 @default.
- W2951093035 hasConcept C185592680 @default.
- W2951093035 hasConcept C190470478 @default.
- W2951093035 hasConcept C202444582 @default.
- W2951093035 hasConcept C204575570 @default.
- W2951093035 hasConcept C27602778 @default.
- W2951093035 hasConcept C33923547 @default.
- W2951093035 hasConcept C37914503 @default.
- W2951093035 hasConcept C4017995 @default.
- W2951093035 hasConcept C55493867 @default.
- W2951093035 hasConcept C83979697 @default.
- W2951093035 hasConcept C96403706 @default.
- W2951093035 hasConceptScore W2951093035C104317684 @default.
- W2951093035 hasConceptScore W2951093035C114410712 @default.
- W2951093035 hasConceptScore W2951093035C12843 @default.
- W2951093035 hasConceptScore W2951093035C134306372 @default.
- W2951093035 hasConceptScore W2951093035C165525559 @default.
- W2951093035 hasConceptScore W2951093035C185592680 @default.
- W2951093035 hasConceptScore W2951093035C190470478 @default.
- W2951093035 hasConceptScore W2951093035C202444582 @default.
- W2951093035 hasConceptScore W2951093035C204575570 @default.
- W2951093035 hasConceptScore W2951093035C27602778 @default.
- W2951093035 hasConceptScore W2951093035C33923547 @default.
- W2951093035 hasConceptScore W2951093035C37914503 @default.
- W2951093035 hasConceptScore W2951093035C4017995 @default.
- W2951093035 hasConceptScore W2951093035C55493867 @default.
- W2951093035 hasConceptScore W2951093035C83979697 @default.
- W2951093035 hasConceptScore W2951093035C96403706 @default.
- W2951093035 hasLocation W29510930351 @default.
- W2951093035 hasOpenAccess W2951093035 @default.
- W2951093035 hasPrimaryLocation W29510930351 @default.
- W2951093035 hasRelatedWork W1672211522 @default.
- W2951093035 hasRelatedWork W2004772451 @default.
- W2951093035 hasRelatedWork W2047772118 @default.
- W2951093035 hasRelatedWork W2947125792 @default.
- W2951093035 hasRelatedWork W2951093035 @default.
- W2951093035 hasRelatedWork W2951541722 @default.
- W2951093035 hasRelatedWork W4288346221 @default.
- W2951093035 hasRelatedWork W4301376214 @default.
- W2951093035 hasRelatedWork W4312406328 @default.
- W2951093035 hasRelatedWork W4318769964 @default.
- W2951093035 isParatext "false" @default.
- W2951093035 isRetracted "false" @default.
- W2951093035 magId "2951093035" @default.
- W2951093035 workType "dissertation" @default.