Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951122352> ?p ?o ?g. }
- W2951122352 abstract "We propose a nonparametric procedure to achieve fast inference in generative graphical models when the number of latent states is very large. The approach is based on iterative latent variable preselection, where we alternate between learning a 'selection function' to reveal the relevant latent variables, and use this to obtain a compact approximation of the posterior distribution for EM; this can make inference possible where the number of possible latent states is e.g. exponential in the number of latent variables, whereas an exact approach would be computationally unfeasible. We learn the selection function entirely from the observed data and current EM state via Gaussian process regression. This is by contrast with earlier approaches, where selection functions were manually-designed for each problem setting. We show that our approach performs as well as these bespoke selection functions on a wide variety of inference problems: in particular, for the challenging case of a hierarchical model for object localization with occlusion, we achieve results that match a customized state-of-the-art selection method, at a far lower computational cost." @default.
- W2951122352 created "2019-06-27" @default.
- W2951122352 creator A5004160420 @default.
- W2951122352 creator A5025481720 @default.
- W2951122352 creator A5048713693 @default.
- W2951122352 creator A5057239662 @default.
- W2951122352 creator A5063558677 @default.
- W2951122352 date "2014-12-10" @default.
- W2951122352 modified "2023-09-27" @default.
- W2951122352 title "GP-select: Accelerating EM using adaptive subspace preselection" @default.
- W2951122352 cites W1490822489 @default.
- W2951122352 cites W1562453744 @default.
- W2951122352 cites W175700287 @default.
- W2951122352 cites W1795776692 @default.
- W2951122352 cites W1876599412 @default.
- W2951122352 cites W1981577790 @default.
- W2951122352 cites W1993845689 @default.
- W2951122352 cites W2018044188 @default.
- W2951122352 cites W2026799324 @default.
- W2951122352 cites W2083027289 @default.
- W2951122352 cites W2104489082 @default.
- W2951122352 cites W2108424780 @default.
- W2951122352 cites W2112035340 @default.
- W2951122352 cites W2113651538 @default.
- W2951122352 cites W2117506930 @default.
- W2951122352 cites W2124430240 @default.
- W2951122352 cites W2124645259 @default.
- W2951122352 cites W2128531008 @default.
- W2951122352 cites W2131383280 @default.
- W2951122352 cites W2135624048 @default.
- W2951122352 cites W2137557016 @default.
- W2951122352 cites W2137956165 @default.
- W2951122352 cites W2138806252 @default.
- W2951122352 cites W2141122175 @default.
- W2951122352 cites W2141522908 @default.
- W2951122352 cites W2147336195 @default.
- W2951122352 cites W2151204864 @default.
- W2951122352 cites W2155676512 @default.
- W2951122352 cites W2155995681 @default.
- W2951122352 cites W2161164955 @default.
- W2951122352 cites W2567948266 @default.
- W2951122352 cites W2950277768 @default.
- W2951122352 cites W2951949147 @default.
- W2951122352 cites W2952264928 @default.
- W2951122352 cites W2952677397 @default.
- W2951122352 cites W2963873208 @default.
- W2951122352 cites W47239786 @default.
- W2951122352 cites W2950579266 @default.
- W2951122352 hasPublicationYear "2014" @default.
- W2951122352 type Work @default.
- W2951122352 sameAs 2951122352 @default.
- W2951122352 citedByCount "4" @default.
- W2951122352 countsByYear W29511223522016 @default.
- W2951122352 countsByYear W29511223522017 @default.
- W2951122352 countsByYear W29511223522018 @default.
- W2951122352 countsByYear W29511223522020 @default.
- W2951122352 crossrefType "posted-content" @default.
- W2951122352 hasAuthorship W2951122352A5004160420 @default.
- W2951122352 hasAuthorship W2951122352A5025481720 @default.
- W2951122352 hasAuthorship W2951122352A5048713693 @default.
- W2951122352 hasAuthorship W2951122352A5057239662 @default.
- W2951122352 hasAuthorship W2951122352A5063558677 @default.
- W2951122352 hasConcept C119857082 @default.
- W2951122352 hasConcept C121332964 @default.
- W2951122352 hasConcept C154945302 @default.
- W2951122352 hasConcept C163716315 @default.
- W2951122352 hasConcept C167966045 @default.
- W2951122352 hasConcept C2776214188 @default.
- W2951122352 hasConcept C32834561 @default.
- W2951122352 hasConcept C39890363 @default.
- W2951122352 hasConcept C41008148 @default.
- W2951122352 hasConcept C51167844 @default.
- W2951122352 hasConcept C61326573 @default.
- W2951122352 hasConcept C62520636 @default.
- W2951122352 hasConcept C65965080 @default.
- W2951122352 hasConcept C81917197 @default.
- W2951122352 hasConceptScore W2951122352C119857082 @default.
- W2951122352 hasConceptScore W2951122352C121332964 @default.
- W2951122352 hasConceptScore W2951122352C154945302 @default.
- W2951122352 hasConceptScore W2951122352C163716315 @default.
- W2951122352 hasConceptScore W2951122352C167966045 @default.
- W2951122352 hasConceptScore W2951122352C2776214188 @default.
- W2951122352 hasConceptScore W2951122352C32834561 @default.
- W2951122352 hasConceptScore W2951122352C39890363 @default.
- W2951122352 hasConceptScore W2951122352C41008148 @default.
- W2951122352 hasConceptScore W2951122352C51167844 @default.
- W2951122352 hasConceptScore W2951122352C61326573 @default.
- W2951122352 hasConceptScore W2951122352C62520636 @default.
- W2951122352 hasConceptScore W2951122352C65965080 @default.
- W2951122352 hasConceptScore W2951122352C81917197 @default.
- W2951122352 hasLocation W29511223521 @default.
- W2951122352 hasOpenAccess W2951122352 @default.
- W2951122352 hasPrimaryLocation W29511223521 @default.
- W2951122352 hasRelatedWork W105718209 @default.
- W2951122352 hasRelatedWork W133532789 @default.
- W2951122352 hasRelatedWork W1895281781 @default.
- W2951122352 hasRelatedWork W2117506930 @default.
- W2951122352 hasRelatedWork W2128209899 @default.
- W2951122352 hasRelatedWork W2141522908 @default.
- W2951122352 hasRelatedWork W2163791532 @default.