Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951124793> ?p ?o ?g. }
- W2951124793 abstract "Introducing variability while maintaining coherence is a core task in learning to generate utterances in conversation. Standard neural encoder-decoder models and their extensions using conditional variational autoencoder often result in either trivial or digressive responses. To overcome this, we explore a novel approach that injects variability into neural encoder-decoder via the use of external memory as a mixture model, namely Variational Memory Encoder-Decoder (VMED). By associating each memory read with a mode in the latent mixture distribution at each timestep, our model can capture the variability observed in sequential data such as natural conversations. We empirically compare the proposed model against other recent approaches on various conversational datasets. The results show that VMED consistently achieves significant improvement over others in both metric-based and qualitative evaluations." @default.
- W2951124793 created "2019-06-27" @default.
- W2951124793 creator A5045540854 @default.
- W2951124793 creator A5051630302 @default.
- W2951124793 creator A5078515449 @default.
- W2951124793 creator A5085471517 @default.
- W2951124793 date "2018-07-26" @default.
- W2951124793 modified "2023-09-26" @default.
- W2951124793 title "Variational Memory Encoder-Decoder" @default.
- W2951124793 cites W1522301498 @default.
- W2951124793 cites W1591706642 @default.
- W2951124793 cites W1810943226 @default.
- W2951124793 cites W1959608418 @default.
- W2951124793 cites W2033178790 @default.
- W2951124793 cites W2076963649 @default.
- W2951124793 cites W2131049662 @default.
- W2951124793 cites W2143177362 @default.
- W2951124793 cites W2399880602 @default.
- W2951124793 cites W2415583245 @default.
- W2951124793 cites W2556467266 @default.
- W2951124793 cites W2588768352 @default.
- W2951124793 cites W2618681852 @default.
- W2951124793 cites W2950133940 @default.
- W2951124793 cites W2962717182 @default.
- W2951124793 cites W2963206148 @default.
- W2951124793 cites W2963594498 @default.
- W2951124793 cites W2964308564 @default.
- W2951124793 hasPublicationYear "2018" @default.
- W2951124793 type Work @default.
- W2951124793 sameAs 2951124793 @default.
- W2951124793 citedByCount "4" @default.
- W2951124793 countsByYear W29511247932018 @default.
- W2951124793 countsByYear W29511247932019 @default.
- W2951124793 countsByYear W29511247932020 @default.
- W2951124793 countsByYear W29511247932021 @default.
- W2951124793 crossrefType "posted-content" @default.
- W2951124793 hasAuthorship W2951124793A5045540854 @default.
- W2951124793 hasAuthorship W2951124793A5051630302 @default.
- W2951124793 hasAuthorship W2951124793A5078515449 @default.
- W2951124793 hasAuthorship W2951124793A5085471517 @default.
- W2951124793 hasConcept C101738243 @default.
- W2951124793 hasConcept C105795698 @default.
- W2951124793 hasConcept C111472728 @default.
- W2951124793 hasConcept C111919701 @default.
- W2951124793 hasConcept C11413529 @default.
- W2951124793 hasConcept C118505674 @default.
- W2951124793 hasConcept C125411270 @default.
- W2951124793 hasConcept C127413603 @default.
- W2951124793 hasConcept C138885662 @default.
- W2951124793 hasConcept C153180895 @default.
- W2951124793 hasConcept C154945302 @default.
- W2951124793 hasConcept C15744967 @default.
- W2951124793 hasConcept C176217482 @default.
- W2951124793 hasConcept C189950617 @default.
- W2951124793 hasConcept C201995342 @default.
- W2951124793 hasConcept C21547014 @default.
- W2951124793 hasConcept C2777200299 @default.
- W2951124793 hasConcept C2780451532 @default.
- W2951124793 hasConcept C2781181686 @default.
- W2951124793 hasConcept C28490314 @default.
- W2951124793 hasConcept C33923547 @default.
- W2951124793 hasConcept C41008148 @default.
- W2951124793 hasConcept C46312422 @default.
- W2951124793 hasConcept C50644808 @default.
- W2951124793 hasConcept C57273362 @default.
- W2951124793 hasConceptScore W2951124793C101738243 @default.
- W2951124793 hasConceptScore W2951124793C105795698 @default.
- W2951124793 hasConceptScore W2951124793C111472728 @default.
- W2951124793 hasConceptScore W2951124793C111919701 @default.
- W2951124793 hasConceptScore W2951124793C11413529 @default.
- W2951124793 hasConceptScore W2951124793C118505674 @default.
- W2951124793 hasConceptScore W2951124793C125411270 @default.
- W2951124793 hasConceptScore W2951124793C127413603 @default.
- W2951124793 hasConceptScore W2951124793C138885662 @default.
- W2951124793 hasConceptScore W2951124793C153180895 @default.
- W2951124793 hasConceptScore W2951124793C154945302 @default.
- W2951124793 hasConceptScore W2951124793C15744967 @default.
- W2951124793 hasConceptScore W2951124793C176217482 @default.
- W2951124793 hasConceptScore W2951124793C189950617 @default.
- W2951124793 hasConceptScore W2951124793C201995342 @default.
- W2951124793 hasConceptScore W2951124793C21547014 @default.
- W2951124793 hasConceptScore W2951124793C2777200299 @default.
- W2951124793 hasConceptScore W2951124793C2780451532 @default.
- W2951124793 hasConceptScore W2951124793C2781181686 @default.
- W2951124793 hasConceptScore W2951124793C28490314 @default.
- W2951124793 hasConceptScore W2951124793C33923547 @default.
- W2951124793 hasConceptScore W2951124793C41008148 @default.
- W2951124793 hasConceptScore W2951124793C46312422 @default.
- W2951124793 hasConceptScore W2951124793C50644808 @default.
- W2951124793 hasConceptScore W2951124793C57273362 @default.
- W2951124793 hasLocation W29511247931 @default.
- W2951124793 hasOpenAccess W2951124793 @default.
- W2951124793 hasPrimaryLocation W29511247931 @default.
- W2951124793 hasRelatedWork W2076025447 @default.
- W2951124793 hasRelatedWork W2205078920 @default.
- W2951124793 hasRelatedWork W2418090405 @default.
- W2951124793 hasRelatedWork W2738804062 @default.
- W2951124793 hasRelatedWork W2777929561 @default.
- W2951124793 hasRelatedWork W2787718318 @default.
- W2951124793 hasRelatedWork W2865542650 @default.