Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951142502> ?p ?o ?g. }
- W2951142502 endingPage "107556" @default.
- W2951142502 startingPage "107556" @default.
- W2951142502 abstract "Abstract In this research, plant and fruits extracts were used for the first time to synthesize crystalline starch nanoparticles (CSNP). The physical properties of the CSNP including their size distribution, crystalline structures were investigated. The isolation, recovery yield and the influence of the process variables were studied. The rheological behaviours of the CSNP were compared and contrasted with the native cassava starch (CS) and commercial polymer xanthan. The combined method of weak-acid hydrolysis, ultrasonic and nanoprecipitation were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm, increased yield of 39% and increased in crystallinity of 7% respectively. The CSNP, CS and xanthan exhibited shear-thinning and pseudoplastic behaviour. The R2 value for the model is very close to unity indicating a perfect fit. Indicating that the power law model best describes the rheological behaviour. Cavitation, nucleation and crystals growth were the dominant mechanism that influenced the formation of CSNP. Whereas, concentration, morphology and the surface charge of the solutions were the main factors that influenced the rheology of the system. The viscosity increased with increase in surface area and temperature of the CS and CSNP in contrast to a decrease in viscosity as the temperature of xanthan increases." @default.
- W2951142502 created "2019-06-27" @default.
- W2951142502 creator A5011708820 @default.
- W2951142502 creator A5036921156 @default.
- W2951142502 creator A5044382284 @default.
- W2951142502 creator A5053078428 @default.
- W2951142502 creator A5061237313 @default.
- W2951142502 date "2019-08-01" @default.
- W2951142502 modified "2023-10-16" @default.
- W2951142502 title "Influence of nanoprecipitation on crystalline starch nanoparticle formed by ultrasonic assisted weak-acid hydrolysis of cassava starch and the rheology of their solutions" @default.
- W2951142502 cites W1965747303 @default.
- W2951142502 cites W1976201936 @default.
- W2951142502 cites W1978866386 @default.
- W2951142502 cites W1979358772 @default.
- W2951142502 cites W1980234998 @default.
- W2951142502 cites W1983007527 @default.
- W2951142502 cites W1983170349 @default.
- W2951142502 cites W1985753599 @default.
- W2951142502 cites W1986960835 @default.
- W2951142502 cites W1987826876 @default.
- W2951142502 cites W1988786445 @default.
- W2951142502 cites W1992707872 @default.
- W2951142502 cites W1993035785 @default.
- W2951142502 cites W1994929340 @default.
- W2951142502 cites W2002487558 @default.
- W2951142502 cites W2004336307 @default.
- W2951142502 cites W2006525373 @default.
- W2951142502 cites W2006556173 @default.
- W2951142502 cites W2009445270 @default.
- W2951142502 cites W2015798495 @default.
- W2951142502 cites W2018370876 @default.
- W2951142502 cites W2021714764 @default.
- W2951142502 cites W2023730408 @default.
- W2951142502 cites W2024983005 @default.
- W2951142502 cites W2028501142 @default.
- W2951142502 cites W2031519122 @default.
- W2951142502 cites W2032439868 @default.
- W2951142502 cites W2037259586 @default.
- W2951142502 cites W2038070318 @default.
- W2951142502 cites W2041656191 @default.
- W2951142502 cites W2046011863 @default.
- W2951142502 cites W2046186121 @default.
- W2951142502 cites W2046319718 @default.
- W2951142502 cites W2053524878 @default.
- W2951142502 cites W2056862825 @default.
- W2951142502 cites W2059052839 @default.
- W2951142502 cites W2059649645 @default.
- W2951142502 cites W2060620579 @default.
- W2951142502 cites W2063750898 @default.
- W2951142502 cites W2064458084 @default.
- W2951142502 cites W2069900230 @default.
- W2951142502 cites W2076495102 @default.
- W2951142502 cites W2078024086 @default.
- W2951142502 cites W2081266058 @default.
- W2951142502 cites W2083271361 @default.
- W2951142502 cites W2085953652 @default.
- W2951142502 cites W2089728468 @default.
- W2951142502 cites W2090970850 @default.
- W2951142502 cites W2091792482 @default.
- W2951142502 cites W2094101808 @default.
- W2951142502 cites W2094612735 @default.
- W2951142502 cites W2097087957 @default.
- W2951142502 cites W2102490294 @default.
- W2951142502 cites W2104388144 @default.
- W2951142502 cites W2106498051 @default.
- W2951142502 cites W2109520483 @default.
- W2951142502 cites W2110000773 @default.
- W2951142502 cites W2118278430 @default.
- W2951142502 cites W2120718587 @default.
- W2951142502 cites W2126919966 @default.
- W2951142502 cites W2139085857 @default.
- W2951142502 cites W2150154937 @default.
- W2951142502 cites W2162055769 @default.
- W2951142502 cites W2167467907 @default.
- W2951142502 cites W2168500047 @default.
- W2951142502 cites W2171312758 @default.
- W2951142502 cites W2171674879 @default.
- W2951142502 cites W2250122738 @default.
- W2951142502 cites W2323675526 @default.
- W2951142502 cites W2329954428 @default.
- W2951142502 cites W2332019796 @default.
- W2951142502 cites W2333659210 @default.
- W2951142502 cites W2336542372 @default.
- W2951142502 cites W2383110048 @default.
- W2951142502 cites W2460617229 @default.
- W2951142502 cites W2538502187 @default.
- W2951142502 cites W2557754202 @default.
- W2951142502 cites W2792516815 @default.
- W2951142502 cites W2794872469 @default.
- W2951142502 cites W2806654796 @default.
- W2951142502 cites W2885530585 @default.
- W2951142502 cites W2888466312 @default.
- W2951142502 cites W2888528081 @default.
- W2951142502 doi "https://doi.org/10.1016/j.cep.2019.107556" @default.
- W2951142502 hasPublicationYear "2019" @default.
- W2951142502 type Work @default.
- W2951142502 sameAs 2951142502 @default.
- W2951142502 citedByCount "44" @default.