Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951162601> ?p ?o ?g. }
- W2951162601 endingPage "220" @default.
- W2951162601 startingPage "212" @default.
- W2951162601 abstract "Motivation The genotype assignment problem consists of predicting, from the genotype of an individual, which of a known set of populations it originated from. The problem arises in a variety of contexts, including wildlife forensics, invasive species detection and biodiversity monitoring. Existing approaches perform well under ideal conditions but are sensitive to a variety of common violations of the assumptions they rely on. Results In this article, we introduce Mycorrhiza, a machine learning approach for the genotype assignment problem. Our algorithm makes use of phylogenetic networks to engineer features that encode the evolutionary relationships among samples. Those features are then used as input to a Random Forests classifier. The classification accuracy was assessed on multiple published empirical SNP, microsatellite or consensus sequence datasets with wide ranges of size, geographical distribution and population structure and on simulated datasets. It compared favorably against widely used assessment tests or mixture analysis methods such as STRUCTURE and Admixture, and against another machine-learning based approach using principal component analysis for dimensionality reduction. Mycorrhiza yields particularly significant gains on datasets with a large average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium. Moreover, the phylogenetic network approach estimates mixture proportions with good accuracy." @default.
- W2951162601 created "2019-06-27" @default.
- W2951162601 creator A5007863049 @default.
- W2951162601 creator A5014203330 @default.
- W2951162601 creator A5074184206 @default.
- W2951162601 date "2019-06-14" @default.
- W2951162601 modified "2023-09-27" @default.
- W2951162601 title "Mycorrhiza: genotype assignment using phylogenetic networks" @default.
- W2951162601 cites W1600112846 @default.
- W2951162601 cites W1834060250 @default.
- W2951162601 cites W1849663075 @default.
- W2951162601 cites W1886329524 @default.
- W2951162601 cites W1975612392 @default.
- W2951162601 cites W1977601452 @default.
- W2951162601 cites W1987161984 @default.
- W2951162601 cites W1998867815 @default.
- W2951162601 cites W2004263429 @default.
- W2951162601 cites W2005717619 @default.
- W2951162601 cites W2013483531 @default.
- W2951162601 cites W2021210077 @default.
- W2951162601 cites W2031435922 @default.
- W2951162601 cites W2055298722 @default.
- W2951162601 cites W2055969811 @default.
- W2951162601 cites W2060891246 @default.
- W2951162601 cites W2067376788 @default.
- W2951162601 cites W2069016054 @default.
- W2951162601 cites W2075371279 @default.
- W2951162601 cites W2076007362 @default.
- W2951162601 cites W2082884310 @default.
- W2951162601 cites W2087234681 @default.
- W2951162601 cites W2095552680 @default.
- W2951162601 cites W2098126593 @default.
- W2951162601 cites W2100152398 @default.
- W2951162601 cites W2102223413 @default.
- W2951162601 cites W2104549677 @default.
- W2951162601 cites W2112491041 @default.
- W2951162601 cites W2116585889 @default.
- W2951162601 cites W2117665706 @default.
- W2951162601 cites W2119444539 @default.
- W2951162601 cites W2120962599 @default.
- W2951162601 cites W2121552166 @default.
- W2951162601 cites W2124020140 @default.
- W2951162601 cites W2125056339 @default.
- W2951162601 cites W2128686408 @default.
- W2951162601 cites W2137485034 @default.
- W2951162601 cites W2138556224 @default.
- W2951162601 cites W2145593145 @default.
- W2951162601 cites W2146290595 @default.
- W2951162601 cites W2149799970 @default.
- W2951162601 cites W2157093642 @default.
- W2951162601 cites W2158489424 @default.
- W2951162601 cites W2160194015 @default.
- W2951162601 cites W2167727784 @default.
- W2951162601 cites W2170044511 @default.
- W2951162601 cites W2256193935 @default.
- W2951162601 cites W2257762450 @default.
- W2951162601 cites W2301484670 @default.
- W2951162601 cites W2336949764 @default.
- W2951162601 cites W2336973098 @default.
- W2951162601 cites W2530475060 @default.
- W2951162601 cites W2566365669 @default.
- W2951162601 cites W2754950880 @default.
- W2951162601 cites W2758550728 @default.
- W2951162601 cites W2772407841 @default.
- W2951162601 cites W2782678399 @default.
- W2951162601 cites W2783813721 @default.
- W2951162601 cites W2791073736 @default.
- W2951162601 cites W2793807873 @default.
- W2951162601 cites W2951621382 @default.
- W2951162601 cites W2962725223 @default.
- W2951162601 cites W2963776453 @default.
- W2951162601 doi "https://doi.org/10.1093/bioinformatics/btz476" @default.
- W2951162601 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31197316" @default.
- W2951162601 hasPublicationYear "2019" @default.
- W2951162601 type Work @default.
- W2951162601 sameAs 2951162601 @default.
- W2951162601 citedByCount "4" @default.
- W2951162601 countsByYear W29511626012019 @default.
- W2951162601 countsByYear W29511626012022 @default.
- W2951162601 crossrefType "journal-article" @default.
- W2951162601 hasAuthorship W2951162601A5007863049 @default.
- W2951162601 hasAuthorship W2951162601A5014203330 @default.
- W2951162601 hasAuthorship W2951162601A5074184206 @default.
- W2951162601 hasBestOaLocation W29511626012 @default.
- W2951162601 hasConcept C104317684 @default.
- W2951162601 hasConcept C105795698 @default.
- W2951162601 hasConcept C119857082 @default.
- W2951162601 hasConcept C124101348 @default.
- W2951162601 hasConcept C144024400 @default.
- W2951162601 hasConcept C149923435 @default.
- W2951162601 hasConcept C154945302 @default.
- W2951162601 hasConcept C193252679 @default.
- W2951162601 hasConcept C27438332 @default.
- W2951162601 hasConcept C2908647359 @default.
- W2951162601 hasConcept C33923547 @default.
- W2951162601 hasConcept C41008148 @default.
- W2951162601 hasConcept C54355233 @default.
- W2951162601 hasConcept C86803240 @default.