Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951174033> ?p ?o ?g. }
- W2951174033 endingPage "616" @default.
- W2951174033 startingPage "605" @default.
- W2951174033 abstract "Climate-induced changes in plant phenology and physiology plays an important role in control of carbon exchange between terrestrial ecosystems and the atmosphere. Based on dataset during 1997–2014 from 41 flux tower sites (440 site-years) across the northern hemisphere, relationships between long-term trends in start of growing season (SOS), end of growing season (EOS), length of growing season (LOS), maximal gross primary production (GPPmax), and seasonal and annual gross primary production (GPP) were analyzed. Statistical Models of Integrated Phenology and Physiology (SMIPP) were built for predicting the long-term trends in annual GPP. Results showed that SOS advanced and EOS delayed for forest sites, while both SOS and EOS for grassland (GRA) sites delayed. Long-term trends in SOS and EOS of evergreen needle-leaf forests (ENF) sites were greater than those of deciduous broadleaf forests (DBF) sites. Seasonal and annual GPP for forest sites increased, among which long-term trend in annual GPP of ENF sites was the largest. Spring GPP of GRA sites decreased, but annual GPP increased. Strong relationships between long-term trends in phenological and physiological indicators and seasonal GPP were found. Long-term trend in GPPmax had the highest relationship with long-term trend in annual GPP for forest sites, but long-term trend in SOS was the most related to long-term trend in annual GPP for GRA sites. Increases in spring and autumn GPP due to a one-day advance in SOS and delay in EOS for DBF sites were greater than ENF sites. Delay in EOS resulted in more carbon sequestration than advance in SOS for forest sites, while advance in SOS significantly increased spring GPP for GRA sites. The SMIPP model driven by long-term trends in LOS and GPPmax had stronger explanatory power for predicting long-term trend in annual GPP than the SMIPP model driven by long-term trends in SOS, EOS, and GPPmax. Long-term trend in annual GPP was accurately predicted by using the SMIPP model, while long-term trend in annual GPP for GRA sites was more difficult to be captured than the forest sites. Drought and disturbance effects on phenology and physiology were major factors for model uncertainty. This study is helpful to understand changes in phenology and carbon uptake and their differences among different vegetation types and provides a potential way for predicting annual rate of change in carbon uptake through vegetation photosynthesis at a global scale." @default.
- W2951174033 created "2019-06-27" @default.
- W2951174033 creator A5006691049 @default.
- W2951174033 creator A5007385062 @default.
- W2951174033 creator A5013791920 @default.
- W2951174033 creator A5022022551 @default.
- W2951174033 creator A5030157758 @default.
- W2951174033 creator A5045117407 @default.
- W2951174033 date "2019-09-01" @default.
- W2951174033 modified "2023-10-17" @default.
- W2951174033 title "Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data" @default.
- W2951174033 cites W1177623217 @default.
- W2951174033 cites W1680433633 @default.
- W2951174033 cites W1961143416 @default.
- W2951174033 cites W1970268633 @default.
- W2951174033 cites W2002230897 @default.
- W2951174033 cites W2018636632 @default.
- W2951174033 cites W2018780555 @default.
- W2951174033 cites W2022224360 @default.
- W2951174033 cites W2038927660 @default.
- W2951174033 cites W2051159954 @default.
- W2951174033 cites W2085527949 @default.
- W2951174033 cites W2093454196 @default.
- W2951174033 cites W2107235457 @default.
- W2951174033 cites W2108506605 @default.
- W2951174033 cites W2112081076 @default.
- W2951174033 cites W2114313289 @default.
- W2951174033 cites W2114848721 @default.
- W2951174033 cites W2115024216 @default.
- W2951174033 cites W2123095840 @default.
- W2951174033 cites W2124437404 @default.
- W2951174033 cites W2128342866 @default.
- W2951174033 cites W2131062081 @default.
- W2951174033 cites W2135233387 @default.
- W2951174033 cites W2139429070 @default.
- W2951174033 cites W2140944264 @default.
- W2951174033 cites W2143551354 @default.
- W2951174033 cites W2146652541 @default.
- W2951174033 cites W2161454991 @default.
- W2951174033 cites W2196391350 @default.
- W2951174033 cites W2320370918 @default.
- W2951174033 cites W2326014856 @default.
- W2951174033 cites W2461658512 @default.
- W2951174033 cites W2522055505 @default.
- W2951174033 cites W2557609320 @default.
- W2951174033 cites W2570446315 @default.
- W2951174033 cites W2583748766 @default.
- W2951174033 cites W2609546815 @default.
- W2951174033 cites W2616354077 @default.
- W2951174033 cites W2758719065 @default.
- W2951174033 cites W2773417829 @default.
- W2951174033 cites W2774009070 @default.
- W2951174033 cites W2790597003 @default.
- W2951174033 cites W2793804454 @default.
- W2951174033 cites W2794421859 @default.
- W2951174033 cites W2796980406 @default.
- W2951174033 cites W2888384226 @default.
- W2951174033 cites W2891480234 @default.
- W2951174033 doi "https://doi.org/10.1016/j.jenvman.2019.06.023" @default.
- W2951174033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31202828" @default.
- W2951174033 hasPublicationYear "2019" @default.
- W2951174033 type Work @default.
- W2951174033 sameAs 2951174033 @default.
- W2951174033 citedByCount "35" @default.
- W2951174033 countsByYear W29511740332019 @default.
- W2951174033 countsByYear W29511740332020 @default.
- W2951174033 countsByYear W29511740332021 @default.
- W2951174033 countsByYear W29511740332022 @default.
- W2951174033 countsByYear W29511740332023 @default.
- W2951174033 crossrefType "journal-article" @default.
- W2951174033 hasAuthorship W2951174033A5006691049 @default.
- W2951174033 hasAuthorship W2951174033A5007385062 @default.
- W2951174033 hasAuthorship W2951174033A5013791920 @default.
- W2951174033 hasAuthorship W2951174033A5022022551 @default.
- W2951174033 hasAuthorship W2951174033A5030157758 @default.
- W2951174033 hasAuthorship W2951174033A5045117407 @default.
- W2951174033 hasConcept C110872660 @default.
- W2951174033 hasConcept C127313418 @default.
- W2951174033 hasConcept C137660486 @default.
- W2951174033 hasConcept C142724271 @default.
- W2951174033 hasConcept C177924670 @default.
- W2951174033 hasConcept C18903297 @default.
- W2951174033 hasConcept C24717449 @default.
- W2951174033 hasConcept C2775835988 @default.
- W2951174033 hasConcept C2776133958 @default.
- W2951174033 hasConcept C2780797852 @default.
- W2951174033 hasConcept C33283694 @default.
- W2951174033 hasConcept C35187779 @default.
- W2951174033 hasConcept C39432304 @default.
- W2951174033 hasConcept C49204034 @default.
- W2951174033 hasConcept C51417038 @default.
- W2951174033 hasConcept C65680412 @default.
- W2951174033 hasConcept C71924100 @default.
- W2951174033 hasConcept C86803240 @default.
- W2951174033 hasConcept C91586092 @default.
- W2951174033 hasConceptScore W2951174033C110872660 @default.
- W2951174033 hasConceptScore W2951174033C127313418 @default.
- W2951174033 hasConceptScore W2951174033C137660486 @default.