Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951199024> ?p ?o ?g. }
- W2951199024 endingPage "1007" @default.
- W2951199024 startingPage "999" @default.
- W2951199024 abstract "In recent years, research has been showing a great interest in using magnetic resonance imaging (MRI) as the only modality for radiation therapy (RT) for its superior soft-tissue visualisation and non-ionizing proprieties. Furthermore, MRI-only RT would be of great benefit to eliminate image registration errors, reduce cost and workload. In addition, machine-learning algorithms have been taking the lead in many fields. For instance, in MRI-only RT, machine learning is showing a notable performance compared to other methods owed to the flexibility of these methods towards data regardless of model complexity. In this paper, we present an ensemble learning approach with stacked generalisation to simulate a CT scan from multi-modal MR images from which patch-based shape, texture and spatial features were considered. Feature extraction, fusion and reduction were performed to get the most descriptive and informative features. The ensemble learning model was constructed with two levels of learning were the basic level consisted of three base learners namely: artificial neural networks (ANN), random forests (RF) and k-nearest neighbours (kNN) and the second level representing the stacking learner that takes predictions from the base learner and generates the final predictions. Multiple linear regression (MLR) was used for the stacked generalisation. The proposed ensemble learning with stacked generalisation (ES) approach produced an average mean absolute error (MAE) of 87.60 ± 19.70 and an average mean error (ME) of −4.68 ± 16.43 outperforming the RF method, which produced an average MAE of 106.88 ± 33.20 and an average ME of −5.38 ± 20.77. In addition, average Pearson correlation was 0.92 for the proposed approach compared to 0.89 for RF. Evaluation of the proposed approach shows that stacked generalisation can greatly improve prediction accuracy and reduce bias in electron density estimation." @default.
- W2951199024 created "2019-06-27" @default.
- W2951199024 creator A5000194284 @default.
- W2951199024 creator A5040040593 @default.
- W2951199024 date "2021-10-01" @default.
- W2951199024 modified "2023-10-10" @default.
- W2951199024 title "Magnetic resonance-driven pseudo CT image using patch-based multi-modal feature extraction and ensemble learning with stacked generalisation" @default.
- W2951199024 cites W1966326540 @default.
- W2951199024 cites W1969750491 @default.
- W2951199024 cites W1998729887 @default.
- W2951199024 cites W2003059727 @default.
- W2951199024 cites W2006721374 @default.
- W2951199024 cites W2015897296 @default.
- W2951199024 cites W2021177063 @default.
- W2951199024 cites W2061119986 @default.
- W2951199024 cites W2080858163 @default.
- W2951199024 cites W2100495482 @default.
- W2951199024 cites W2105254502 @default.
- W2951199024 cites W2107496735 @default.
- W2951199024 cites W2132984323 @default.
- W2951199024 cites W2133287637 @default.
- W2951199024 cites W2135293965 @default.
- W2951199024 cites W2162246940 @default.
- W2951199024 cites W2163352848 @default.
- W2951199024 cites W2208340121 @default.
- W2951199024 cites W2513595145 @default.
- W2951199024 cites W2549512150 @default.
- W2951199024 cites W2561999579 @default.
- W2951199024 cites W2597280008 @default.
- W2951199024 cites W2597382898 @default.
- W2951199024 cites W2616510185 @default.
- W2951199024 cites W2747864634 @default.
- W2951199024 cites W2754132686 @default.
- W2951199024 cites W2768348544 @default.
- W2951199024 cites W2805992239 @default.
- W2951199024 cites W2808312419 @default.
- W2951199024 cites W28412257 @default.
- W2951199024 cites W2911964244 @default.
- W2951199024 cites W2963176524 @default.
- W2951199024 cites W2963881378 @default.
- W2951199024 cites W3004732066 @default.
- W2951199024 cites W3101123465 @default.
- W2951199024 cites W3102986501 @default.
- W2951199024 cites W944333893 @default.
- W2951199024 doi "https://doi.org/10.1016/j.jksuci.2019.06.002" @default.
- W2951199024 hasPublicationYear "2021" @default.
- W2951199024 type Work @default.
- W2951199024 sameAs 2951199024 @default.
- W2951199024 citedByCount "4" @default.
- W2951199024 countsByYear W29511990242020 @default.
- W2951199024 countsByYear W29511990242022 @default.
- W2951199024 crossrefType "journal-article" @default.
- W2951199024 hasAuthorship W2951199024A5000194284 @default.
- W2951199024 hasAuthorship W2951199024A5040040593 @default.
- W2951199024 hasBestOaLocation W29511990241 @default.
- W2951199024 hasConcept C119857082 @default.
- W2951199024 hasConcept C126838900 @default.
- W2951199024 hasConcept C138885662 @default.
- W2951199024 hasConcept C143409427 @default.
- W2951199024 hasConcept C153180895 @default.
- W2951199024 hasConcept C154945302 @default.
- W2951199024 hasConcept C2776401178 @default.
- W2951199024 hasConcept C41008148 @default.
- W2951199024 hasConcept C41895202 @default.
- W2951199024 hasConcept C45942800 @default.
- W2951199024 hasConcept C50644808 @default.
- W2951199024 hasConcept C52622490 @default.
- W2951199024 hasConcept C71924100 @default.
- W2951199024 hasConceptScore W2951199024C119857082 @default.
- W2951199024 hasConceptScore W2951199024C126838900 @default.
- W2951199024 hasConceptScore W2951199024C138885662 @default.
- W2951199024 hasConceptScore W2951199024C143409427 @default.
- W2951199024 hasConceptScore W2951199024C153180895 @default.
- W2951199024 hasConceptScore W2951199024C154945302 @default.
- W2951199024 hasConceptScore W2951199024C2776401178 @default.
- W2951199024 hasConceptScore W2951199024C41008148 @default.
- W2951199024 hasConceptScore W2951199024C41895202 @default.
- W2951199024 hasConceptScore W2951199024C45942800 @default.
- W2951199024 hasConceptScore W2951199024C50644808 @default.
- W2951199024 hasConceptScore W2951199024C52622490 @default.
- W2951199024 hasConceptScore W2951199024C71924100 @default.
- W2951199024 hasIssue "8" @default.
- W2951199024 hasLocation W29511990241 @default.
- W2951199024 hasOpenAccess W2951199024 @default.
- W2951199024 hasPrimaryLocation W29511990241 @default.
- W2951199024 hasRelatedWork W2002934375 @default.
- W2951199024 hasRelatedWork W2006468016 @default.
- W2951199024 hasRelatedWork W2011111248 @default.
- W2951199024 hasRelatedWork W2056020138 @default.
- W2951199024 hasRelatedWork W2070663714 @default.
- W2951199024 hasRelatedWork W2257755506 @default.
- W2951199024 hasRelatedWork W2462603952 @default.
- W2951199024 hasRelatedWork W2912860444 @default.
- W2951199024 hasRelatedWork W4256129901 @default.
- W2951199024 hasRelatedWork W3021493803 @default.
- W2951199024 hasVolume "33" @default.
- W2951199024 isParatext "false" @default.
- W2951199024 isRetracted "false" @default.