Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951220458> ?p ?o ?g. }
- W2951220458 endingPage "e195822" @default.
- W2951220458 startingPage "e195822" @default.
- W2951220458 abstract "Duodenal biopsies from children with enteropathies associated with undernutrition, such as environmental enteropathy (EE) and celiac disease (CD), display significant histopathological overlap.To develop a convolutional neural network (CNN) to enhance the detection of pathologic morphological features in diseased vs healthy duodenal tissue.In this prospective diagnostic study, a CNN consisting of 4 convolutions, 1 fully connected layer, and 1 softmax layer was trained on duodenal biopsy images. Data were provided by 3 sites: Aga Khan University Hospital, Karachi, Pakistan; University Teaching Hospital, Lusaka, Zambia; and University of Virginia, Charlottesville. Duodenal biopsy slides from 102 children (10 with EE from Aga Khan University Hospital, 16 with EE from University Teaching Hospital, 34 with CD from University of Virginia, and 42 with no disease from University of Virginia) were converted into 3118 images. The CNN was designed and analyzed at the University of Virginia. The data were collected, prepared, and analyzed between November 2017 and February 2018.Classification accuracy of the CNN per image and per case and incorrect classification rate identified by aggregated 10-fold cross-validation confusion/error matrices of CNN models.Overall, 102 children participated in this study, with a median (interquartile range) age of 31.0 (20.3-75.5) months and a roughly equal sex distribution, with 53 boys (51.9%). The model demonstrated 93.4% case-detection accuracy and had a false-negative rate of 2.4%. Confusion metrics indicated most incorrect classifications were between patients with CD and healthy patients. Feature map activations were visualized and learned distinctive patterns, including microlevel features in duodenal tissues, such as alterations in secretory cell populations.A machine learning-based histopathological analysis model demonstrating 93.4% classification accuracy was developed for identifying and differentiating between duodenal biopsies from children with EE and CD. The combination of the CNN with a deconvolutional network enabled feature recognition and highlighted secretory cells' role in the model's ability to differentiate between these histologically similar diseases." @default.
- W2951220458 created "2019-06-27" @default.
- W2951220458 creator A5020288318 @default.
- W2951220458 creator A5020853957 @default.
- W2951220458 creator A5021341057 @default.
- W2951220458 creator A5029489919 @default.
- W2951220458 creator A5036379332 @default.
- W2951220458 creator A5072623901 @default.
- W2951220458 creator A5077438469 @default.
- W2951220458 creator A5081507417 @default.
- W2951220458 creator A5083478362 @default.
- W2951220458 creator A5086462231 @default.
- W2951220458 creator A5089634637 @default.
- W2951220458 date "2019-06-14" @default.
- W2951220458 modified "2023-10-12" @default.
- W2951220458 title "Assessment of Machine Learning Detection of Environmental Enteropathy and Celiac Disease in Children" @default.
- W2951220458 cites W1773667642 @default.
- W2951220458 cites W1930423902 @default.
- W2951220458 cites W1965007454 @default.
- W2951220458 cites W1976193075 @default.
- W2951220458 cites W1997494654 @default.
- W2951220458 cites W2006940889 @default.
- W2951220458 cites W2020626093 @default.
- W2951220458 cites W2070445709 @default.
- W2951220458 cites W2090331375 @default.
- W2951220458 cites W2100548379 @default.
- W2951220458 cites W2103243046 @default.
- W2951220458 cites W2110243528 @default.
- W2951220458 cites W2117537894 @default.
- W2951220458 cites W2194775991 @default.
- W2951220458 cites W2293078015 @default.
- W2951220458 cites W2323267110 @default.
- W2951220458 cites W2325524608 @default.
- W2951220458 cites W2470184165 @default.
- W2951220458 cites W2525209951 @default.
- W2951220458 cites W2529153069 @default.
- W2951220458 cites W2550840646 @default.
- W2951220458 cites W2557738935 @default.
- W2951220458 cites W2588570836 @default.
- W2951220458 cites W2593134963 @default.
- W2951220458 cites W2594704520 @default.
- W2951220458 cites W2598442119 @default.
- W2951220458 cites W2609260042 @default.
- W2951220458 cites W2612954227 @default.
- W2951220458 cites W2737322495 @default.
- W2951220458 cites W2742657997 @default.
- W2951220458 cites W2770414417 @default.
- W2951220458 cites W2772246530 @default.
- W2951220458 cites W2772723798 @default.
- W2951220458 cites W2774292910 @default.
- W2951220458 cites W2783060248 @default.
- W2951220458 cites W2785433900 @default.
- W2951220458 cites W2789894922 @default.
- W2951220458 cites W2793624926 @default.
- W2951220458 cites W2794186149 @default.
- W2951220458 cites W2795811688 @default.
- W2951220458 cites W2800727394 @default.
- W2951220458 cites W2919115771 @default.
- W2951220458 cites W4233026002 @default.
- W2951220458 cites W4236827393 @default.
- W2951220458 cites W4236836788 @default.
- W2951220458 cites W4256341043 @default.
- W2951220458 doi "https://doi.org/10.1001/jamanetworkopen.2019.5822" @default.
- W2951220458 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6575155" @default.
- W2951220458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31199451" @default.
- W2951220458 hasPublicationYear "2019" @default.
- W2951220458 type Work @default.
- W2951220458 sameAs 2951220458 @default.
- W2951220458 citedByCount "31" @default.
- W2951220458 countsByYear W29512204582019 @default.
- W2951220458 countsByYear W29512204582020 @default.
- W2951220458 countsByYear W29512204582021 @default.
- W2951220458 countsByYear W29512204582022 @default.
- W2951220458 countsByYear W29512204582023 @default.
- W2951220458 crossrefType "journal-article" @default.
- W2951220458 hasAuthorship W2951220458A5020288318 @default.
- W2951220458 hasAuthorship W2951220458A5020853957 @default.
- W2951220458 hasAuthorship W2951220458A5021341057 @default.
- W2951220458 hasAuthorship W2951220458A5029489919 @default.
- W2951220458 hasAuthorship W2951220458A5036379332 @default.
- W2951220458 hasAuthorship W2951220458A5072623901 @default.
- W2951220458 hasAuthorship W2951220458A5077438469 @default.
- W2951220458 hasAuthorship W2951220458A5081507417 @default.
- W2951220458 hasAuthorship W2951220458A5083478362 @default.
- W2951220458 hasAuthorship W2951220458A5086462231 @default.
- W2951220458 hasAuthorship W2951220458A5089634637 @default.
- W2951220458 hasBestOaLocation W29512204581 @default.
- W2951220458 hasConcept C105795698 @default.
- W2951220458 hasConcept C11171543 @default.
- W2951220458 hasConcept C119060515 @default.
- W2951220458 hasConcept C122048520 @default.
- W2951220458 hasConcept C126322002 @default.
- W2951220458 hasConcept C154945302 @default.
- W2951220458 hasConcept C15744967 @default.
- W2951220458 hasConcept C188441871 @default.
- W2951220458 hasConcept C2775934546 @default.
- W2951220458 hasConcept C2776809568 @default.
- W2951220458 hasConcept C2778426112 @default.