Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951234909> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2951234909 abstract "It is proven that each indecomposable injective module over a valuation domain $R$ is polyserial if and only if each maximal immediate extension $widehat{R}$ of $R$ is of finite rank over the completion $widetilde{R}$ of $R$ in the $R$-topology. In this case, for each indecomposable injective module $E$, the following invariants are finite and equal: its Malcev rank, its Fleischer rank and its dual Goldie dimension. Similar results are obtained for chain rings satisfying some additional properties. It is also shown that each indecomposable injective module over one Krull-dimensional local Noetherian rings has finite Malcev rank. The preservation of Goldie dimension finiteness by localization is investigated too." @default.
- W2951234909 created "2019-06-27" @default.
- W2951234909 creator A5082056304 @default.
- W2951234909 date "2013-01-01" @default.
- W2951234909 modified "2023-09-25" @default.
- W2951234909 title "Indecomposable injective modules of finite Malcev rank over local commutative rings" @default.
- W2951234909 cites W1499065554 @default.
- W2951234909 cites W1986363818 @default.
- W2951234909 cites W1990858621 @default.
- W2951234909 cites W2022356665 @default.
- W2951234909 cites W2025244892 @default.
- W2951234909 cites W2066989889 @default.
- W2951234909 cites W2081917506 @default.
- W2951234909 cites W2085860546 @default.
- W2951234909 cites W2169159749 @default.
- W2951234909 cites W2724457478 @default.
- W2951234909 cites W7810678 @default.
- W2951234909 cites W2277359067 @default.
- W2951234909 hasPublicationYear "2013" @default.
- W2951234909 type Work @default.
- W2951234909 sameAs 2951234909 @default.
- W2951234909 citedByCount "0" @default.
- W2951234909 crossrefType "journal-article" @default.
- W2951234909 hasAuthorship W2951234909A5082056304 @default.
- W2951234909 hasBestOaLocation W29512349091 @default.
- W2951234909 hasConcept C114614502 @default.
- W2951234909 hasConcept C128107574 @default.
- W2951234909 hasConcept C157480366 @default.
- W2951234909 hasConcept C164226766 @default.
- W2951234909 hasConcept C183778304 @default.
- W2951234909 hasConcept C202444582 @default.
- W2951234909 hasConcept C33923547 @default.
- W2951234909 hasConcept C99463465 @default.
- W2951234909 hasConceptScore W2951234909C114614502 @default.
- W2951234909 hasConceptScore W2951234909C128107574 @default.
- W2951234909 hasConceptScore W2951234909C157480366 @default.
- W2951234909 hasConceptScore W2951234909C164226766 @default.
- W2951234909 hasConceptScore W2951234909C183778304 @default.
- W2951234909 hasConceptScore W2951234909C202444582 @default.
- W2951234909 hasConceptScore W2951234909C33923547 @default.
- W2951234909 hasConceptScore W2951234909C99463465 @default.
- W2951234909 hasLocation W29512349091 @default.
- W2951234909 hasLocation W29512349092 @default.
- W2951234909 hasLocation W29512349093 @default.
- W2951234909 hasLocation W29512349094 @default.
- W2951234909 hasLocation W29512349095 @default.
- W2951234909 hasOpenAccess W2951234909 @default.
- W2951234909 hasPrimaryLocation W29512349091 @default.
- W2951234909 hasRelatedWork W2029736304 @default.
- W2951234909 hasRelatedWork W2044732501 @default.
- W2951234909 hasRelatedWork W2105912791 @default.
- W2951234909 hasRelatedWork W2109333618 @default.
- W2951234909 hasRelatedWork W2116660350 @default.
- W2951234909 hasRelatedWork W2327772614 @default.
- W2951234909 hasRelatedWork W2354143888 @default.
- W2951234909 hasRelatedWork W2949423833 @default.
- W2951234909 hasRelatedWork W3020694661 @default.
- W2951234909 hasRelatedWork W4300980666 @default.
- W2951234909 isParatext "false" @default.
- W2951234909 isRetracted "false" @default.
- W2951234909 magId "2951234909" @default.
- W2951234909 workType "article" @default.