Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951241120> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2951241120 endingPage "7075" @default.
- W2951241120 startingPage "7053" @default.
- W2951241120 abstract "Time series analysis is an important research topic of great interest in many fields. Recently, the Matrix Profile method, and particularly one of its implementations—the SCRIMP algorithm—has become a state-of-the-art approach in this field. This is a technique that brings the possibility of obtaining exact motifs from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. However, the memory-bound nature of the SCRIMP algorithm limits the execution performance in some processor architectures. In this paper, we analyze the SCRIMP algorithm from the performance viewpoint in the context of the Intel Xeon Phi Knights Landing architecture (KNL), which integrates high-bandwidth memory (HBM) modules, and we combine several techniques aimed at exploiting the potential of this architecture. On the one hand, we exploit the multi-threading and vector capabilities of the architecture. On the other hand, we explore how to allocate data in order to take advantage of the available hybrid memory architecture that conjugates both the high-bandwidth 3D-stacked HBM and the DDR4 memory modules. The experimental evaluation shows a performance improvement up to $$190,times $$ with respect to the sequential execution and that the use of the HBM memory improves performance in a factor up to $$5,times $$ with respect to the DDR4 memory." @default.
- W2951241120 created "2019-06-27" @default.
- W2951241120 creator A5020856640 @default.
- W2951241120 creator A5032105032 @default.
- W2951241120 creator A5039157507 @default.
- W2951241120 creator A5040859568 @default.
- W2951241120 date "2019-06-10" @default.
- W2951241120 modified "2023-10-01" @default.
- W2951241120 title "Accelerating time series motif discovery in the Intel Xeon Phi KNL processor" @default.
- W2951241120 cites W1586106326 @default.
- W2951241120 cites W1981479878 @default.
- W2951241120 cites W1985571147 @default.
- W2951241120 cites W2006761268 @default.
- W2951241120 cites W2099302229 @default.
- W2951241120 cites W2122646361 @default.
- W2951241120 cites W2131413854 @default.
- W2951241120 cites W2164000012 @default.
- W2951241120 cites W2164274563 @default.
- W2951241120 cites W2177262641 @default.
- W2951241120 cites W2252531811 @default.
- W2951241120 cites W2340076492 @default.
- W2951241120 cites W2467043670 @default.
- W2951241120 cites W2583336059 @default.
- W2951241120 cites W2584499795 @default.
- W2951241120 cites W2586871115 @default.
- W2951241120 cites W2608847424 @default.
- W2951241120 cites W2753802340 @default.
- W2951241120 cites W2907759361 @default.
- W2951241120 cites W4210409048 @default.
- W2951241120 cites W4230551151 @default.
- W2951241120 doi "https://doi.org/10.1007/s11227-019-02923-5" @default.
- W2951241120 hasPublicationYear "2019" @default.
- W2951241120 type Work @default.
- W2951241120 sameAs 2951241120 @default.
- W2951241120 citedByCount "8" @default.
- W2951241120 countsByYear W29512411202020 @default.
- W2951241120 countsByYear W29512411202021 @default.
- W2951241120 countsByYear W29512411202022 @default.
- W2951241120 countsByYear W29512411202023 @default.
- W2951241120 crossrefType "journal-article" @default.
- W2951241120 hasAuthorship W2951241120A5020856640 @default.
- W2951241120 hasAuthorship W2951241120A5032105032 @default.
- W2951241120 hasAuthorship W2951241120A5039157507 @default.
- W2951241120 hasAuthorship W2951241120A5040859568 @default.
- W2951241120 hasBestOaLocation W29512411202 @default.
- W2951241120 hasConcept C111919701 @default.
- W2951241120 hasConcept C145108525 @default.
- W2951241120 hasConcept C173608175 @default.
- W2951241120 hasConcept C41008148 @default.
- W2951241120 hasConcept C96972482 @default.
- W2951241120 hasConceptScore W2951241120C111919701 @default.
- W2951241120 hasConceptScore W2951241120C145108525 @default.
- W2951241120 hasConceptScore W2951241120C173608175 @default.
- W2951241120 hasConceptScore W2951241120C41008148 @default.
- W2951241120 hasConceptScore W2951241120C96972482 @default.
- W2951241120 hasIssue "11" @default.
- W2951241120 hasLocation W29512411201 @default.
- W2951241120 hasLocation W29512411202 @default.
- W2951241120 hasOpenAccess W2951241120 @default.
- W2951241120 hasPrimaryLocation W29512411201 @default.
- W2951241120 hasRelatedWork W2021375050 @default.
- W2951241120 hasRelatedWork W2107463933 @default.
- W2951241120 hasRelatedWork W2170268965 @default.
- W2951241120 hasRelatedWork W2214459866 @default.
- W2951241120 hasRelatedWork W2475524688 @default.
- W2951241120 hasRelatedWork W2526069705 @default.
- W2951241120 hasRelatedWork W2624440775 @default.
- W2951241120 hasRelatedWork W2950549070 @default.
- W2951241120 hasRelatedWork W2998249817 @default.
- W2951241120 hasRelatedWork W3004176791 @default.
- W2951241120 hasVolume "75" @default.
- W2951241120 isParatext "false" @default.
- W2951241120 isRetracted "false" @default.
- W2951241120 magId "2951241120" @default.
- W2951241120 workType "article" @default.