Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951268427> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2951268427 abstract "Gaussian Graphical Models provide a convenient framework for representing dependencies between variables. Recently, this tool has received a high interest for the discovery of biological networks. The literature focuses on the case where a single network is inferred from a set of measurements, but, as wetlab data is typically scarce, several assays, where the experimental conditions affect interactions, are usually merged to infer a single network. In this paper, we propose two approaches for estimating multiple related graphs, by rendering the closeness assumption into an empirical prior or group penalties. We provide quantitative results demonstrating the benefits of the proposed approaches. The methods presented in this paper are embeded in the R package 'simone' from version 1.0-0 and later." @default.
- W2951268427 created "2019-06-27" @default.
- W2951268427 creator A5012516981 @default.
- W2951268427 creator A5021351429 @default.
- W2951268427 creator A5089457658 @default.
- W2951268427 date "2011-01-01" @default.
- W2951268427 modified "2023-09-25" @default.
- W2951268427 title "Inferring Multiple Graphical Structures" @default.
- W2951268427 cites W1522500670 @default.
- W2951268427 cites W1528046055 @default.
- W2951268427 cites W1984915212 @default.
- W2951268427 cites W2005842424 @default.
- W2951268427 cites W2046649434 @default.
- W2951268427 cites W2062102668 @default.
- W2951268427 cites W2073307618 @default.
- W2951268427 cites W2081746825 @default.
- W2951268427 cites W2132555912 @default.
- W2951268427 cites W2134068681 @default.
- W2951268427 cites W2138019504 @default.
- W2951268427 cites W2145590522 @default.
- W2951268427 cites W2913340405 @default.
- W2951268427 cites W2962971803 @default.
- W2951268427 cites W3098888484 @default.
- W2951268427 hasPublicationYear "2011" @default.
- W2951268427 type Work @default.
- W2951268427 sameAs 2951268427 @default.
- W2951268427 citedByCount "0" @default.
- W2951268427 crossrefType "journal-article" @default.
- W2951268427 hasAuthorship W2951268427A5012516981 @default.
- W2951268427 hasAuthorship W2951268427A5021351429 @default.
- W2951268427 hasAuthorship W2951268427A5089457658 @default.
- W2951268427 hasBestOaLocation W29512684271 @default.
- W2951268427 hasConcept C154945302 @default.
- W2951268427 hasConcept C155846161 @default.
- W2951268427 hasConcept C41008148 @default.
- W2951268427 hasConceptScore W2951268427C154945302 @default.
- W2951268427 hasConceptScore W2951268427C155846161 @default.
- W2951268427 hasConceptScore W2951268427C41008148 @default.
- W2951268427 hasLocation W29512684271 @default.
- W2951268427 hasOpenAccess W2951268427 @default.
- W2951268427 hasPrimaryLocation W29512684271 @default.
- W2951268427 hasRelatedWork W1556793200 @default.
- W2951268427 hasRelatedWork W1561998153 @default.
- W2951268427 hasRelatedWork W1997653423 @default.
- W2951268427 hasRelatedWork W2109986081 @default.
- W2951268427 hasRelatedWork W2534859116 @default.
- W2951268427 hasRelatedWork W2612319427 @default.
- W2951268427 hasRelatedWork W2748952813 @default.
- W2951268427 hasRelatedWork W2897107362 @default.
- W2951268427 hasRelatedWork W2899084033 @default.
- W2951268427 hasRelatedWork W34193391 @default.
- W2951268427 isParatext "false" @default.
- W2951268427 isRetracted "false" @default.
- W2951268427 magId "2951268427" @default.
- W2951268427 workType "article" @default.