Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951298295> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2951298295 abstract "W. A. Moens proved that a Lie algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. In this paper we show that with the definition of Leibniz-derivation from W. A. Moens the similar result for non Lie Leibniz algebras is not true. Namely, we give an example of non nilpotent Leibniz algebra which admits an invertible Leibniz-derivation. In order to extend the results of paper W. A. Moens for Leibniz algebras we introduce a definition of Leibniz-derivation of Leibniz algebras which agrees with Leibniz-derivation of Lie algebras case. Further we prove that a Leibniz algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. Moreover, the result that solvable radical of a Lie algebra is invariant with respect to a Leibniz-derivation was extended to the case of Leibniz algebras." @default.
- W2951298295 created "2019-06-27" @default.
- W2951298295 creator A5036779291 @default.
- W2951298295 creator A5067969809 @default.
- W2951298295 creator A5070497962 @default.
- W2951298295 date "2012-04-08" @default.
- W2951298295 modified "2023-09-24" @default.
- W2951298295 title "A characterization of nilpotent Leibniz algebras" @default.
- W2951298295 cites W1968532244 @default.
- W2951298295 cites W1980974593 @default.
- W2951298295 cites W2031880172 @default.
- W2951298295 cites W2034717948 @default.
- W2951298295 cites W2101112027 @default.
- W2951298295 cites W2151434683 @default.
- W2951298295 cites W2325586798 @default.
- W2951298295 cites W2949174214 @default.
- W2951298295 cites W2949278290 @default.
- W2951298295 cites W2949475539 @default.
- W2951298295 cites W2953158845 @default.
- W2951298295 cites W368684127 @default.
- W2951298295 doi "https://doi.org/10.48550/arxiv.1204.1721" @default.
- W2951298295 hasPublicationYear "2012" @default.
- W2951298295 type Work @default.
- W2951298295 sameAs 2951298295 @default.
- W2951298295 citedByCount "0" @default.
- W2951298295 crossrefType "posted-content" @default.
- W2951298295 hasAuthorship W2951298295A5036779291 @default.
- W2951298295 hasAuthorship W2951298295A5067969809 @default.
- W2951298295 hasAuthorship W2951298295A5070497962 @default.
- W2951298295 hasBestOaLocation W29512982951 @default.
- W2951298295 hasConcept C136119220 @default.
- W2951298295 hasConcept C190470478 @default.
- W2951298295 hasConcept C202444582 @default.
- W2951298295 hasConcept C33923547 @default.
- W2951298295 hasConcept C37914503 @default.
- W2951298295 hasConcept C50555996 @default.
- W2951298295 hasConcept C51568863 @default.
- W2951298295 hasConcept C96442724 @default.
- W2951298295 hasConceptScore W2951298295C136119220 @default.
- W2951298295 hasConceptScore W2951298295C190470478 @default.
- W2951298295 hasConceptScore W2951298295C202444582 @default.
- W2951298295 hasConceptScore W2951298295C33923547 @default.
- W2951298295 hasConceptScore W2951298295C37914503 @default.
- W2951298295 hasConceptScore W2951298295C50555996 @default.
- W2951298295 hasConceptScore W2951298295C51568863 @default.
- W2951298295 hasConceptScore W2951298295C96442724 @default.
- W2951298295 hasLocation W29512982951 @default.
- W2951298295 hasOpenAccess W2951298295 @default.
- W2951298295 hasPrimaryLocation W29512982951 @default.
- W2951298295 hasRelatedWork W1978654816 @default.
- W2951298295 hasRelatedWork W2004427275 @default.
- W2951298295 hasRelatedWork W2040600929 @default.
- W2951298295 hasRelatedWork W2047496443 @default.
- W2951298295 hasRelatedWork W2254432714 @default.
- W2951298295 hasRelatedWork W2261558382 @default.
- W2951298295 hasRelatedWork W2901496727 @default.
- W2951298295 hasRelatedWork W2963450278 @default.
- W2951298295 hasRelatedWork W3181599934 @default.
- W2951298295 hasRelatedWork W4318445608 @default.
- W2951298295 isParatext "false" @default.
- W2951298295 isRetracted "false" @default.
- W2951298295 magId "2951298295" @default.
- W2951298295 workType "article" @default.