Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951308596> ?p ?o ?g. }
- W2951308596 endingPage "1780" @default.
- W2951308596 startingPage "1761" @default.
- W2951308596 abstract "We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment." @default.
- W2951308596 created "2019-06-27" @default.
- W2951308596 creator A5007908578 @default.
- W2951308596 creator A5042666638 @default.
- W2951308596 creator A5055341021 @default.
- W2951308596 creator A5068971702 @default.
- W2951308596 date "2018-06-19" @default.
- W2951308596 modified "2023-09-29" @default.
- W2951308596 title "A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure" @default.
- W2951308596 cites W1488660595 @default.
- W2951308596 cites W155390068 @default.
- W2951308596 cites W1572302037 @default.
- W2951308596 cites W1802854002 @default.
- W2951308596 cites W1969115978 @default.
- W2951308596 cites W1996564297 @default.
- W2951308596 cites W1999785714 @default.
- W2951308596 cites W2003750542 @default.
- W2951308596 cites W2005592438 @default.
- W2951308596 cites W2006967671 @default.
- W2951308596 cites W2008557562 @default.
- W2951308596 cites W2009187570 @default.
- W2951308596 cites W2012797835 @default.
- W2951308596 cites W2022450888 @default.
- W2951308596 cites W2027579047 @default.
- W2951308596 cites W2032038468 @default.
- W2951308596 cites W2039811614 @default.
- W2951308596 cites W2049316269 @default.
- W2951308596 cites W2060645165 @default.
- W2951308596 cites W2064097590 @default.
- W2951308596 cites W2073738917 @default.
- W2951308596 cites W2078439407 @default.
- W2951308596 cites W2080556896 @default.
- W2951308596 cites W2082246284 @default.
- W2951308596 cites W2082299845 @default.
- W2951308596 cites W2082934890 @default.
- W2951308596 cites W2097360283 @default.
- W2951308596 cites W2105344025 @default.
- W2951308596 cites W2119998616 @default.
- W2951308596 cites W2123017979 @default.
- W2951308596 cites W2128984831 @default.
- W2951308596 cites W2137370054 @default.
- W2951308596 cites W2138909292 @default.
- W2951308596 cites W2143891888 @default.
- W2951308596 cites W2146895648 @default.
- W2951308596 cites W2148429341 @default.
- W2951308596 cites W2149393522 @default.
- W2951308596 cites W2149860264 @default.
- W2951308596 cites W2150291618 @default.
- W2951308596 cites W2152505869 @default.
- W2951308596 cites W2155031749 @default.
- W2951308596 cites W2164413684 @default.
- W2951308596 cites W2166689328 @default.
- W2951308596 cites W2169462149 @default.
- W2951308596 cites W2171443468 @default.
- W2951308596 cites W2238552371 @default.
- W2951308596 cites W2251755465 @default.
- W2951308596 cites W2310218779 @default.
- W2951308596 cites W2317782077 @default.
- W2951308596 cites W2403671454 @default.
- W2951308596 cites W2429518434 @default.
- W2951308596 cites W2766385829 @default.
- W2951308596 cites W28412257 @default.
- W2951308596 cites W2963976092 @default.
- W2951308596 cites W3100452679 @default.
- W2951308596 cites W3122049309 @default.
- W2951308596 cites W4233056867 @default.
- W2951308596 cites W4233345704 @default.
- W2951308596 cites W4233471163 @default.
- W2951308596 cites W4235788384 @default.
- W2951308596 cites W4239510810 @default.
- W2951308596 cites W4248240383 @default.
- W2951308596 cites W4323966314 @default.
- W2951308596 cites W850275508 @default.
- W2951308596 doi "https://doi.org/10.1177/0962280218774936" @default.
- W2951308596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29921160" @default.
- W2951308596 hasPublicationYear "2018" @default.
- W2951308596 type Work @default.
- W2951308596 sameAs 2951308596 @default.
- W2951308596 citedByCount "19" @default.
- W2951308596 countsByYear W29513085962019 @default.
- W2951308596 countsByYear W29513085962020 @default.
- W2951308596 countsByYear W29513085962021 @default.
- W2951308596 countsByYear W29513085962022 @default.
- W2951308596 countsByYear W29513085962023 @default.
- W2951308596 crossrefType "journal-article" @default.
- W2951308596 hasAuthorship W2951308596A5007908578 @default.
- W2951308596 hasAuthorship W2951308596A5042666638 @default.
- W2951308596 hasAuthorship W2951308596A5055341021 @default.
- W2951308596 hasAuthorship W2951308596A5068971702 @default.
- W2951308596 hasBestOaLocation W29513085962 @default.
- W2951308596 hasConcept C105795698 @default.
- W2951308596 hasConcept C119043178 @default.
- W2951308596 hasConcept C126322002 @default.
- W2951308596 hasConcept C144237770 @default.
- W2951308596 hasConcept C148220186 @default.
- W2951308596 hasConcept C149782125 @default.
- W2951308596 hasConcept C154945302 @default.
- W2951308596 hasConcept C158600405 @default.